scholarly journals Innovating Fire Detection System Fire using Artificial Intelligence by Image Processing

with fires spreading increasingly around the world due to increasing global warming, it has become imperative to develop an intelligent system that detects fires early, using modern technology. Therefore, we used one of the artificial intelligence techniques, which is deep learning, which is one of the popular methods now. Professionals have done a lot of research, experiments, and coding software to detect fires using deep learning. Through this paper, we review current methods that are reached by industry professionals, as well as data sets and fire detection accuracy for each method.

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2025 ◽  
Author(s):  
Jun Hong Park ◽  
Seunggi Lee ◽  
Seongjin Yun ◽  
Hanjin Kim ◽  
Won-Tae Kim

A fire detection system requires accurate and fast mechanisms to make the right decision in a fire situation. Since most commercial fire detection systems use a simple sensor, their fire recognition accuracy is deficient because of the limitations of the detection capability of the sensor. Existing proposals, which use rule-based algorithms or image-based machine learning can hardly adapt to the changes in the environment because of their static features. Since the legacy fire detection systems and network services do not guarantee data transfer latency, the required need for promptness is unmet. In this paper, we propose a new fire detection system with a multifunctional artificial intelligence framework and a data transfer delay minimization mechanism for the safety of smart cities. The framework includes a set of multiple machine learning algorithms and an adaptive fuzzy algorithm. In addition, Direct-MQTT based on SDN is introduced to solve the traffic concentration problems of the traditional MQTT. We verify the performance of the proposed system in terms of accuracy and delay time and found a fire detection accuracy of over 95%. The end-to-end delay, which comprises the transfer and decision delays, is reduced by an average of 72%.


2021 ◽  
Vol 11 (15) ◽  
pp. 7050
Author(s):  
Zeeshan Ahmad ◽  
Adnan Shahid Khan ◽  
Kashif Nisar ◽  
Iram Haider ◽  
Rosilah Hassan ◽  
...  

The revolutionary idea of the internet of things (IoT) architecture has gained enormous popularity over the last decade, resulting in an exponential growth in the IoT networks, connected devices, and the data processed therein. Since IoT devices generate and exchange sensitive data over the traditional internet, security has become a prime concern due to the generation of zero-day cyberattacks. A network-based intrusion detection system (NIDS) can provide the much-needed efficient security solution to the IoT network by protecting the network entry points through constant network traffic monitoring. Recent NIDS have a high false alarm rate (FAR) in detecting the anomalies, including the novel and zero-day anomalies. This paper proposes an efficient anomaly detection mechanism using mutual information (MI), considering a deep neural network (DNN) for an IoT network. A comparative analysis of different deep-learning models such as DNN, Convolutional Neural Network, Recurrent Neural Network, and its different variants, such as Gated Recurrent Unit and Long Short-term Memory is performed considering the IoT-Botnet 2020 dataset. Experimental results show the improvement of 0.57–2.6% in terms of the model’s accuracy, while at the same time reducing the FAR by 0.23–7.98% to show the effectiveness of the DNN-based NIDS model compared to the well-known deep learning models. It was also observed that using only the 16–35 best numerical features selected using MI instead of 80 features of the dataset result in almost negligible degradation in the model’s performance but helped in decreasing the overall model’s complexity. In addition, the overall accuracy of the DL-based models is further improved by almost 0.99–3.45% in terms of the detection accuracy considering only the top five categorical and numerical features.


Author(s):  
Yong He

The current automatic packaging process is complex, requires high professional knowledge, poor universality, and difficult to apply in multi-objective and complex background. In view of this problem, automatic packaging optimization algorithm has been widely paid attention to. However, the traditional automatic packaging detection accuracy is low, the practicability is poor. Therefore, a semi-supervised detection method of automatic packaging curve based on deep learning and semi-supervised learning is proposed. Deep learning is used to extract features and posterior probability to classify unlabeled data. KDD CUP99 data set was used to verify the accuracy of the algorithm. Experimental results show that this method can effectively improve the performance of automatic packaging curve semi-supervised detection system.


Author(s):  
Roberto Marmo

As a conseguence of expansion of modern technology, the number and scenario of fraud are increasing dramatically. Therefore, the reputation blemish and losses caused are primary motivations for technologies and methodologies for fraud detection that have been applied successfully in some economic activities. The detection involves monitoring the behavior of users based on huge data sets such as the logged data and user behavior. The aim of this contribution is to show some data mining techniques for fraud detection and prevention with applications in credit card and telecommunications, within a business of mining the data to achieve higher cost savings, and also in the interests of determining potential legal evidence. The problem is very difficult because fraudsters takes many different forms and are adaptive, so they will usually look for ways to avoid every security measures.


2020 ◽  
Vol 10 (20) ◽  
pp. 7347
Author(s):  
Jihyo Seo ◽  
Hyejin Park ◽  
Seungyeon Choo

Artificial intelligence presents an optimized alternative by performing problem-solving knowledge and problem-solving processes under specific conditions. This makes it possible to creatively examine various design alternatives under conditions that satisfy the functional requirements of the building. In this study, in order to develop architectural design automation technology using artificial intelligence, the characteristics of an architectural drawings, that is, the architectural elements and the composition of spaces expressed in the drawings, were learned, recognized, and inferred through deep learning. The biggest problem in applying deep learning in the field of architectural design is that the amount of publicly disclosed data is absolutely insufficient and that the publicly disclosed data also haves a wide variety of forms. Using the technology proposed in this study, it is possible to quickly and easily create labeling images of drawings, so it is expected that a large amount of data sets that can be used for deep learning for the automatic recommendation of architectural design or automatic 3D modeling can be obtained. This will be the basis for architectural design technology using artificial intelligence in the future, as it can propose an architectural plan that meets specific circumstances or requirements.


2020 ◽  
Vol 10 (6) ◽  
pp. 1343-1358
Author(s):  
Ernesto Iadanza ◽  
Rachele Fabbri ◽  
Džana Bašić-ČiČak ◽  
Amedeo Amedei ◽  
Jasminka Hasic Telalovic

Abstract This article aims to provide a thorough overview of the use of Artificial Intelligence (AI) techniques in studying the gut microbiota and its role in the diagnosis and treatment of some important diseases. The association between microbiota and diseases, together with its clinical relevance, is still difficult to interpret. The advances in AI techniques, such as Machine Learning (ML) and Deep Learning (DL), can help clinicians in processing and interpreting these massive data sets. Two research groups have been involved in this Scoping Review, working in two different areas of Europe: Florence and Sarajevo. The papers included in the review describe the use of ML or DL methods applied to the study of human gut microbiota. In total, 1109 papers were considered in this study. After elimination, a final set of 16 articles was considered in the scoping review. Different AI techniques were applied in the reviewed papers. Some papers applied ML, while others applied DL techniques. 11 papers evaluated just different ML algorithms (ranging from one to eight algorithms applied to one dataset). The remaining five papers examined both ML and DL algorithms. The most applied ML algorithm was Random Forest and it also exhibited the best performances.


2021 ◽  
Vol 7 ◽  
pp. e551
Author(s):  
Nihad Karim Chowdhury ◽  
Muhammad Ashad Kabir ◽  
Md. Muhtadir Rahman ◽  
Noortaz Rezoana

The goal of this research is to develop and implement a highly effective deep learning model for detecting COVID-19. To achieve this goal, in this paper, we propose an ensemble of Convolutional Neural Network (CNN) based on EfficientNet, named ECOVNet, to detect COVID-19 from chest X-rays. To make the proposed model more robust, we have used one of the largest open-access chest X-ray data sets named COVIDx containing three classes—COVID-19, normal, and pneumonia. For feature extraction, we have applied an effective CNN structure, namely EfficientNet, with ImageNet pre-training weights. The generated features are transferred into custom fine-tuned top layers followed by a set of model snapshots. The predictions of the model snapshots (which are created during a single training) are consolidated through two ensemble strategies, i.e., hard ensemble and soft ensemble, to enhance classification performance. In addition, a visualization technique is incorporated to highlight areas that distinguish classes, thereby enhancing the understanding of primal components related to COVID-19. The results of our empirical evaluations show that the proposed ECOVNet model outperforms the state-of-the-art approaches and significantly improves detection performance with 100% recall for COVID-19 and overall accuracy of 96.07%. We believe that ECOVNet can enhance the detection of COVID-19 disease, and thus, underpin a fully automated and efficacious COVID-19 detection system.


2021 ◽  
Author(s):  
Ming Li ◽  
Dezhi Han ◽  
Dun Li ◽  
Han Liu ◽  
Chin- Chen Chang

Abstract Network intrusion detection, which takes the extraction and analysis of network traffic features as the main method, plays a vital role in network security protection. The current network traffic feature extraction and analysis for network intrusion detection mostly uses deep learning algorithms. Currently, deep learning requires a lot of training resources, and have weak processing capabilities for imbalanced data sets. In this paper, a deep learning model (MFVT) based on feature fusion network and Vision Transformer architecture is proposed, to which improves the processing ability of imbalanced data sets and reduces the sample data resources needed for training. Besides, to improve the traditional raw traffic features extraction methods, a new raw traffic features extraction method (CRP) is proposed, the CPR uses PCA algorithm to reduce all the processed digital traffic features to the specified dimension. On the IDS 2017 dataset and the IDS 2012 dataset, the ablation experiments show that the performance of the proposed MFVT model is significantly better than other network intrusion detection models, and the detection accuracy can reach the state-of-the-art level. And, When MFVT model is combined with CRP algorithm, the detection accuracy is further improved to 99.99%.


Sign in / Sign up

Export Citation Format

Share Document