scholarly journals The Effect of Sensor Structure and Coplanar Electrode for Capacitive Based Flow Sensor

2019 ◽  
Vol 8 (2) ◽  
pp. 4795-4799

This paper presents the analysis of the capacitive based flow sensor using computational fluid dynamic (CFD) and mathematical equation approach. The CFD simulations for different types of sensor structure were carried out. Pressure and velocity of the fluid were varied in order to study the hydrodynamic parameter such as displacement and drag force. For the coplanar electrode, width of electrode and half gap between electrodes were varied for capacitive response using mathematical approach. Based on the simulation, the displacement of the dome increases as the pressure increases. The result shows that the most suitable thickness of the dome is 0.1 mm based on the displacement and the strain. Meanwhile for the coplanar electrode, the width and half gap showed a significant effect on the capacitance response.

2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Halina Pawlak-Kruczek ◽  
Robert Lewtak ◽  
Zbigniew Plutecki ◽  
Marcin Baranowski ◽  
Michal Ostrycharczyk ◽  
...  

The paper presents the experimental and numerical study on the behavior and performance of an industrial scale boiler during combustion of pulverized bituminous coal with various shares of predried lignite. The experimental measurements were carried out on a boiler WP120 located in CHP, Opole, Poland. Tests on the boiler were performed during low load operation and the lignite share reached over to 36% by mass. The predried lignite, kept in dedicated separate bunkers, was mixed with bituminous coal just before the coal mills. Computational fluid dynamic (CFD) simulation of a cofiring scenario of lignite with hard coal was also performed. Site measurements have proven that cofiring of a predried lignite is not detrimental to the boiler in terms of its overall efficiency, when compared with a corresponding reference case, with 100% of hard coal. Experiments demonstrated an improvement in the grindability that can be achieved during co-milling of lignite and hard coal in the same mill, for both wet and dry lignite. Moreover, performed tests delivered empirical evidence of the potential of lignite to decrease NOx emissions during cofiring, for both wet and dry lignite. Results of efficiency calculations and temperature measurements in the combustion chamber confirmed the need to predry lignite before cofiring. Performed measurements of temperature distribution in the combustion chamber confirmed trend that could be seen in the results of CFD. CFD simulations were performed for predried lignite and demonstrated flow patterns in the combustion chamber of the boiler, which could prove useful in case of any further improvements in the firing system. CFD simulations reached satisfactory agreement with the site measurements in terms of the prediction of emissions.


2017 ◽  
Vol 118 (5) ◽  
pp. 2770-2788 ◽  
Author(s):  
David M. Coppola ◽  
Brittaney E. Ritchie ◽  
Brent A. Craven

The spatial distribution of receptors within sensory epithelia (e.g., retina and skin) is often markedly nonuniform to gain efficiency in information capture and neural processing. By contrast, odors, unlike visual and tactile stimuli, have no obvious spatial dimension. What need then could there be for either nearest-neighbor relationships or nonuniform distributions of receptor cells in the olfactory epithelium (OE)? Adrian (Adrian ED. J Physiol 100: 459–473, 1942; Adrian ED. Br Med Bull 6: 330–332, 1950) provided the only widely debated answer to this question when he posited that the physical properties of odors, such as volatility and water solubility, determine a spatial pattern of stimulation across the OE that could aid odor discrimination. Unfortunately, despite its longevity, few critical tests of the “sorption hypothesis” exist. Here we test the predictions of this hypothesis by mapping mouse OE responses using the electroolfactogram (EOG) and comparing these response “maps” to computational fluid dynamics (CFD) simulations of airflow and odorant sorption patterns in the nasal cavity. CFD simulations were performed for airflow rates corresponding to quiet breathing and sniffing. Consistent with predictions of the sorption hypothesis, water-soluble odorants tended to evoke larger EOG responses in the central portion of the OE than the peripheral portion. However, sorption simulation patterns along individual nasal turbinates for particular odorants did not correlate with their EOG response gradients. Indeed, the most consistent finding was a rostral-greater to caudal-lesser response gradient for all the odorants tested that is unexplained by sorption patterns. The viability of the sorption and related olfactory “fovea” hypotheses are discussed in light of these findings. NEW & NOTEWORTHY Two classical ideas concerning olfaction’s receptor-surface two-dimensional organization—the sorption and olfactory fovea hypotheses—were found wanting in this study that afforded unprecedented comparisons between electrophysiological recordings in the mouse olfactory epithelium and computational fluid dynamic simulations of nasal airflow. Alternatively, it is proposed that the olfactory receptor layouts in macrosmatic mammals may be an evolutionary contingent state devoid of the functional significance found in other sensory epithelia like the cochlea and retina.


Author(s):  
Gisele C. de A. Cunha ◽  
José P. Lopes Neto ◽  
Dermeval A. Furtado ◽  
Valéria P. Borges ◽  
Elias A. Freire ◽  
...  

ABSTRACT Negative pressure ventilation in poultry houses has been used to enable the correction of their internal microclimates, and studies point to the heterogeneous distribution of air along the aviaries and the inadequacy of the environmental variables to the recommended ranges for thermal comfort of adult birds, especially in the hottest hours of the day. This study aimed to diagnose the facilities of a poultry house in the state of Paraíba, Brazil, regarding the distribution of environmental variables and thermal comfort; develop a computational model and validate it for Computational Fluid Dynamic - CFD simulations. Air temperature (Tair), air relative humidity (RH) and air velocity (Vair) data allowed characterizing the internal environment by comparison with the recommended ranges for each variable and by the temperature-humidity-velocity index (THVI). The poultry house does not provide comfort for the housed adult birds, between 12 and 14 h, with THVI indicating alert and Tair, RH and Vair values outside the recommended ranges; the CFD model for the poultry house was validated with Tair averages collected in the field of 27.75 ± 1.35 ºC and simulated of 27.85 ± 0.55 ºC, mean values of RH collected of 83 ± 12% and simulated of 78 ± 3%, and means of Vair collected of 2.35 ± 1.35 m s-1 and simulated of 2.50 ± 1.50 m s-1.


2019 ◽  
Vol 27 (01) ◽  
pp. 1950005 ◽  
Author(s):  
Raid Ahmed Mahmood ◽  
David Buttsworth ◽  
Ray Malpress

The flash tank separator is one of the most important components that can be used to improve the performance of a refrigeration cycle by separating the liquid from the gas–liquid two-phase flow and providing the evaporator with only liquid refrigerant. This technique increases the effective area and enhances the heat transfer coefficient in the evaporator. To optimize the size of the vertical flash tank separator for obtaining high separation efficiency, the effect of the size of the vertical flash tank separator needs to be considered. This paper investigates the effect of the size on the liquid separation efficiency of the vertical flash tank separator. This paper also assesses the usefulness of Computational Fluid Dynamic (CFD) in flash tank design, and this is achieved through experiments and simulations on a range of relevant configurations using water as the working fluid. The results revealed that the size has a significant effect on the liquid separation efficiency, as the highest value was achieved by the largest size (VFT-V5). The CFD simulations give a good agreement with the experiments; all the simulations underestimated the liquid separation efficiency by approximately 0.02 over the range of conditions tested.


Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 768 ◽  
Author(s):  
Jonathan Kottmeier ◽  
Maike Wullenweber ◽  
Sebastian Blahout ◽  
Jeanette Hussong ◽  
Ingo Kampen ◽  
...  

A pressure resistant and optically accessible deterministic lateral displacement (DLD) device was designed and microfabricated from silicon and glass for high-throughput fractionation of particles between 3.0 and 7.0 µm comprising array segments of varying tilt angles with a post size of 5 µm. The design was supported by computational fluid dynamic (CFD) simulations using OpenFOAM software. Simulations indicated a change in the critical particle diameter for fractionation at higher Reynolds numbers. This was experimentally confirmed by microparticle image velocimetry (µPIV) in the DLD device with tracer particles of 0.86 µm. At Reynolds numbers above 8 an asymmetric flow field pattern between posts could be observed. Furthermore, the new DLD device allowed successful fractionation of 2 µm and 5 µm fluorescent polystyrene particles at Re = 0.5–25.


2020 ◽  
Vol 28 (03) ◽  
pp. 2050021
Author(s):  
Raid Ahmed Mahmood

Three design enhancement options for a vertical gravitational flash tank separator were proposed and investigated in this work. Computational Fluid Dynamic (CFD) was used to assess the optimum configurations of the vertical gravitational flash tank separator. A series of experiments were performed to test the CFD proposed configurations of the enhancement design options. This paper also assessed the usefulness of CFD in flash tank design, and this is achieved through experiments and simulations on a range of relevant configurations using water as the working fluid. The results revealed that the combination of the inlet flow direction and extractor had a significant effect on the performance of the vertical flash tank separator which increased by 2%. The results also revealed that there was a good agreement between the CFD simulations and experiments; the CFD simulations underestimated the liquid separation efficiency by approximately 0.02 over the range of conditions tested.


2019 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Luca Levrini ◽  
Luigi Paracchini ◽  
Maria Giulia Nosotti

The aim of the current work is to demonstrate the capacity of a new periodontal gel to occupy the spaces inside the periodontal pockets through Computational Fluid Dynamic (CFD). The test gel consists of two resorbable medical grade polymers (PEO, Poly Ethylen Oxide and HPMC, Hydroxy Propyl Metyl Cellulose), Type I Collagen, SAP (Vitamin C), and PBS (Saline Solution), while the control gel is 14% doxyclin controlled release gel, which is used for treating periodontal pockets with probing ≥5 mm after scaling and root plaining. The study examined the fluid dynamic analysis (Computational Fluid Dynamic—CFD) of two different gels, used in dentistry to treat periodontitis, in relation to both the geometry of the periodontal pocket and the function of two different types of needles that are used to distribute the preparation. The periodontal pocket was determined by reading DICOM images taken from the patient’s CAT scan. The results show that the H42® gel comes out uniformly compared to the other gel. Moreover, it is possible to observe how the rheological properties of the gel allow the fluid to spread evenly within the periodontal pocket in relation to the geometry of the needle. In particular, H42® gel exits in a constant way both from the first and the second exit. In fact, it was observed that by changing the geometry of the needle or the type of periodontal gel, the distribution of the gel inside the pocket was no longer homogeneous. Thus, having the correct rheological properties and correct needle geometries both speeds up the gel and optimizes the pressure distribution. Currently, the literature is still lacking, therefore further studies will be needed to confirm these results.


Author(s):  
Alejandro Briones ◽  
Andrew W Caswell ◽  
Brent Rankin

Abstract This work presents fully-coupled computational fluid dynamic (CFD) simulations and thermodynamic cycle analyses of a small-scale turbojet engine at several conditions along the equilibrium running line. The CFD simulations use a single mesh for the entire engine, from the intake to the exhaust, allowing information to travel in all directions. The CFD simulations are performed along the equilibrium running line by using the iterative Secant method to compute the fuel flow rate required to match the compressor and turbine power. The freestream pressure and temperature and shaft angular speed are the only inputs needed for the CFD simulations. To evaluate the consistency of the CFD results with thermodynamic cycle results, outputs from the CFD simulations are prescribed as inputs to the cycle model. This approach enables on-design and off-design cycle calculations to be performed without requiring turbomachinery performance maps. In contrast, traditional off-design cycle analyses require either scaling, calculating, or measuring compressor and turbine maps with boundary condition assumptions. In addition, the CFD simulations and the cycle analyses are compared with measurements of the turbojet engine. The CFD simulations, thermodynamic cycle analyses, and measurements agree in terms of total temperature and pressure at the diffuser-combustor interface, air and fuel mass flow rate, equivalence ratio, and thrust. The developed methods to perform CFD simulations from the intake to the exhaust of the turbojet engine are expected to be useful for guiding the design and development of future small-scale gas turbine engines.


Author(s):  
A. C. Smith ◽  
J. H. Hatchett ◽  
A. C. Nix ◽  
W. F. Ng ◽  
K. A. Thole ◽  
...  

An experimental and numerical investigation was conducted to determine the film cooling effectiveness of a normal slot and angled slot under realistic engine Mach number conditions. Freestream Mach numbers of 0.65 and 1.3 were tested. For the normal slot, hot gas ingestion into the slot was observed at low blowing ratios (M < 0.25). At high blowing ratios (M > 0.6) the cooling film was observed to “lift off” from the surface. For the 30° angled slot, the data was found to collapse using the blowing ratio as a scaling parameter. Results from the current experiment were compared with the subsonic data previously published. For the angle slot, at supersonic freestream Mach number, the current experiment shows that at the same x/Ms, the film-cooling effectiveness increases by as much as 25% as compared to the subsonic case. The results of the experiment also show that at the same x/Ms, the film cooling effectiveness of the angle slot is considerably higher than the normal slot, at both subsonic and supersonic Mach numbers. The flow physics for the slot tests considered here are also described with computational fluid dynamic (CFD) simulations in the subsonic and supersonic regimes.


Sign in / Sign up

Export Citation Format

Share Document