scholarly journals Characterization of SiO2/SiC Interface of Phosphorous-Doped MOS Capacitors by Conductance Measurements

2019 ◽  
Vol 8 (3) ◽  
pp. 5505-5508

Interface states of MOS structures capacitors incorporated with low levels of phosphorous have been investigated by conductance and C-ψs method. The frequency response of interface states was observed by the conductance method up to 10 MHz. The correlation between the frequency response of interface states and interface state density determined by C-ψs method was studied. It was found that fast states in phosphorous incorporated samples reduced significantly at high frequency (>5 MHz) while sample annealed with nitrogen remained high up to 10 MHz. The interface state density, Dit of phosphorous incorporated sample near conduction band is lower compared to nitridated sample. These results indicate phosphorous passivation effectively reduces Dit at the SiO2 /SiC interfaces and can be correlated to high channel mobility.

2014 ◽  
Vol 778-780 ◽  
pp. 418-423 ◽  
Author(s):  
Hironori Yoshioka ◽  
Takashi Nakamura ◽  
Junji Senzaki ◽  
Atsushi Shimozato ◽  
Yasunori Tanaka ◽  
...  

We focused on the inability of the common high-low method to detect very fast interface states, and developed methods to evaluate such states (CψS method). We have investigated correlation between the interface state density (DIT) evaluated by the CψS method and MOSFET performance, and found that the DIT(CψS) was well reflected in MOSFET performance. Very fast interface states which are generated by nitridation restricted the improvement of subthreshold slope and field-effect mobility.


2011 ◽  
Vol 276 ◽  
pp. 87-93
Author(s):  
Y.Y. Gomeniuk ◽  
Y.V. Gomeniuk ◽  
A. Nazarov ◽  
P.K. Hurley ◽  
Karim Cherkaoui ◽  
...  

The paper presents the results of electrical characterization of MOS capacitors and SOI MOSFETs with novel high-κ LaLuO3 dielectric as a gate oxide. The energy distribution of interface state density at LaLuO3/Si interface is presented and typical maxima of 1.2×1011 eV–1cm–2 was found at about 0.25 eV from the silicon valence band. The output and transfer characteristics of the n- and p-MOSFET (channel length and width were 1 µm and 50 µm, respectively) are presented. The front channel mobility appeared to be 126 cm2V–1s–1 and 70 cm2V–1s–1 for n- and p-MOSFET, respectively. The front channel threshold voltages as well as the density of states at the back interface are presented.


2016 ◽  
Vol 858 ◽  
pp. 663-666
Author(s):  
Marilena Vivona ◽  
Patrick Fiorenza ◽  
Tomasz Sledziewski ◽  
Alexandra Gkanatsiou ◽  
Michael Krieger ◽  
...  

In this work, the electrical properties of SiO2/SiC interfaces onto a 2°-off axis 4H-SiC layer were studied and validated through the processing and characterization of metal-oxide-semiconductor (MOS) capacitors. The electrical analyses on the MOS capacitors gave an interface state density in the low 1×1012 eV-1cm-2 range, which results comparable to the standard 4°-off-axis 4H-SiC, currently used for device fabrication. From Fowler-Nordheim analysis and breakdown measurements, a barrier height of 2.9 eV and an oxide breakdown of 10.3 MV/cm were determined. The results demonstrate the maturity of the 2°-off axis material and pave the way for the fabrication of 4H-SiC MOSFET devices on this misorientation angle.


2010 ◽  
Vol 645-648 ◽  
pp. 495-498 ◽  
Author(s):  
Dai Okamoto ◽  
Hiroshi Yano ◽  
Tomoaki Hatayama ◽  
Takashi Fuyuki

A change in the interface state density in 4H-SiC metal–oxide–semiconductor (MOS) structures by incorporation of various elements was systematically investigated. B, N, F, Al, P, and Cl ions were implanted prior to the oxidation and introduced at the SiO2/SiC interface by subsequent thermal oxidation. Interface state density near the conduction band edge for Al-, B-, F-, and Cl-implanted MOS capacitors increased with implantation dose. On the other hand, a strong reduction of the interface state density was observed for N- and P-implanted samples when the implantation dose was larger than 5.0 × 1012 cm−2. It was found that the interface state density can be reduced by P as well as N.


2002 ◽  
Vol 742 ◽  
Author(s):  
Hiroshi Yano ◽  
Taichi Hirao ◽  
Tsunenobu Kimoto ◽  
Hiroyuki Matsunami

ABSTRACTThe interface properties of MOS capacitors and MOSFETs were characterized using the (0001), (1120), and (0338) faces of 4H-SiC. (0001) and (1120) correspond to (111) and (110) in cubic structure. (0338) is semi-equivalent to (100). The interface states near the conduction band edge are discussed based on the capacitance and conductance measurements of n-type MOS capacitors at a low temperature and room temperature. The (0338) face indicated the smallest interface state density near the conduction band edge and highest channel mobility in n-channel MOSFETs among these faces.


2012 ◽  
Vol 717-720 ◽  
pp. 709-712 ◽  
Author(s):  
Shuji Katakami ◽  
Manabu Arai ◽  
Kensuke Takenaka ◽  
Yoshiyuki Yonezawa ◽  
Hitoshi Ishimori ◽  
...  

We investigated the effect of post-oxidation annealing in wet O2 and N2O ambient, following dry O2 oxidation on the SiC MOS interfacial properties by using p-type MOS capacitors. The interfacial properties were dramatically improved by the introduction of hydrogen or nitrogen atoms into the SiO2/SiC interface, in each POA process. Notably, the N2O-POA process at 1200 °C or higher reduced the interface state density more effectively than the wet-O2-POA process, and offers a promising method to further improve the inversion channel mobility of p-channel SiC MOS devices.


2000 ◽  
Vol 622 ◽  
Author(s):  
G.Y. Chung ◽  
C.C. Tin ◽  
J. R. Williams ◽  
K. McDonald ◽  
M. Di Ventra ◽  
...  

ABSTRACTResults are reported for the passivation of interface states near the conduction band edge in n-4H-SiC using post-oxidation anneals in nitric oxide, ammonia and forming gas (N2/5%H2). Anneals in nitric oxide and ammonia reduce the interface state density significantly, while forming gas anneals are largely ineffective. Results suggest that interface states in SiO2/SiC and SiO2/Si have different origins, and a model is described for interface state passivation by nitrogen in the SiO2/SiC system. The inversion channel mobility of 4H-SiC MOSFETs increases with the NO annealing.


2013 ◽  
Vol 740-742 ◽  
pp. 477-480 ◽  
Author(s):  
Tetsuo Hatakeyama ◽  
T. Shimizu ◽  
T. Suzuki ◽  
Y. Nakabayashi ◽  
Hajime Okumura ◽  
...  

Constant-capacitance deep-level-transient spectroscopy (CCDLTS) characterization of traps (or states) in SiO2/SiC interfaces on the C-face was carried out to clarify the cause of low-channel mobility of SiC MOSFETs. CCDLTS measurements showed that the interface-state density (Dit) near the conduction band of SiO2/SiC interfaces fabricated using N2O oxidation was much higher than that of SiO2/SiC interfaces fabricated using wet oxidation. The high density of interface states near the conduction band is likely to be the main cause of the low mobility of MOSFETs fabricated using N2O oxidation.


2014 ◽  
Vol 778-780 ◽  
pp. 631-634 ◽  
Author(s):  
Yoshiyuki Akahane ◽  
Takuo Kano ◽  
Kyosuke Kimura ◽  
Hiroki Komatsu ◽  
Yukimune Watanabe ◽  
...  

A nitride layer was formed on a SiC surface by plasma nitridation using pure nitrogen as the reaction gas at the temperature from 800°C to 1400°C. The surface was characterized by XPS. The XPS measurement showed that an oxinitride layer was formed on the SiC surface by the plasma nitridation. The high process temperature seemed to be effective to activate the niridation reaction. A SiO2film was deposited on the nitridation layer to form SiO2/nitride/SiC structure. The interface state density of the SiO2/nitride/SiC structure was lower than that of the SiO2/SiC structure. This suggested that the nitridation was effective to improve the interface property.


2021 ◽  
Vol 314 ◽  
pp. 95-98
Author(s):  
Tomoki Hirano ◽  
Kenya Nishio ◽  
Takashi Fukatani ◽  
Suguru Saito ◽  
Yoshiya Hagimoto ◽  
...  

In this work, we characterized the wet chemical atomic layer etching of an InGaAs surface by using various surface analysis methods. For this etching process, H2O2 was used to create a self-limiting oxide layer. Oxide removal was studied for both HCl and NH4OH solutions. Less In oxide tended to remain after the HCl treatment than after the NH4OH treatment, so the combination of H2O2 and HCl is suitable for wet chemical atomic layer etching. In addition, we found that repetition of this etching process does not impact on the oxide amount, surface roughness, and interface state density. Thus, nanoscale etching of InGaAs with no impact on the surface condition is possible with this method.


Sign in / Sign up

Export Citation Format

Share Document