scholarly journals Construction of Fuzzy Mean using Standard Deviation ( X  S  ) Control Chart with Process Capability

2019 ◽  
Vol 8 (4) ◽  
pp. 5390-5396

The Quality has established over a number of points such as inspection, quality control, quality assurance, and total quality control and the effects produced by the above phases are used to check and develop the production/service procedure. Statistical process control (SPC) is a powerful collection of problem solving tools valuable in attaining process steadiness and enlightening capability through the decline of variability. Fuzzy set theory is a utilitarian tool to succeed the uncertainty environmental circumstances and the Fuzzy control limits provide a more accurate and flexible rating than the traditional control charts. The purpose of this research article is to construct the fuzzy mean using standard deviation ( X S   ) control chart with the assistance of process capabilityThe Quality has established over a number of points such as inspection, quality control, quality assurance, and total quality control and the effects produced by the above phases are used to check and develop the production/service procedure. Statistical process control (SPC) is a powerful collection of problem solving tools valuable in attaining process steadiness and enlightening capability through the decline of variability. Fuzzy set theory is a utilitarian tool to succeed the uncertainty environmental circumstances and the Fuzzy control limits provide a more accurate and flexible rating than the traditional control charts. The purpose of this research article is to construct the fuzzy mean using standard deviation ( X S   ) control chart with the assistance of process capability

Author(s):  
Somchart Thepvongs ◽  
Brian M. Kleiner

Consistent with the precepts of total quality control and total quality management, there has been a resource shift from incoming and outgoing inspection processes to statistical quality control of processes. Furthermore, process control operators are responsible for their own quality, necessitating the in-process inspection of components. This study treated the statistical process control task of “searching” control charts for out-of-control conditions as an inspection task and applied the Theory of Signal Detection to better understand this behavior and improve performance. Twelve subjects participated in a research study to examine how the portrayal of control chart information affected signal detection theory measures. The type of display did not have a significant effect on the sensitivity and response criterion of subjects. These results are discussed in terms of the applicability of Signal Detection Theory in control chart decision making as well as implications on display design.


2000 ◽  
pp. 233-244

Abstract This chapter provides an introduction to statistical process control and the concept of total quality management. It begins with a review of quality improvement efforts in the extrusion industry and the considerations involved in developing sampling plans and interpreting control charts. It then lays out the steps that would be followed in order to implement statistical testing for billet casting, die performance, or any other process or variable that impacts extrusion quality. The chapter concludes with an overview of the fundamentals of total quality management.


2017 ◽  
Vol 5 (6) ◽  
pp. 368-377
Author(s):  
Kalpesh S. Tailor

Moderate distribution proposed by Naik V.D and Desai J.M., is a sound alternative of normal distribution, which has mean and mean deviation as pivotal parameters and which has properties similar to normal distribution. Mean deviation (δ) is a very good alternative of standard deviation (σ) as mean deviation is considered to be the most intuitively and rationally defined measure of dispersion. This fact can be very useful in the field of quality control to construct the control limits of the control charts. On the basis of this fact Naik V.D. and Tailor K.S. have proposed 3δ control limits. In 3δ control limits, the upper and lower control limits are set at 3δ distance from the central line where δ is the mean deviation of sampling distribution of the statistic being used for constructing the control chart. In this paper assuming that the underlying distribution of the variable of interest follows moderate distribution proposed by Naik V.D and Desai J.M, 3δ control limits of sample standard deviation(s) chart are derived. Also the performance analysis of the control chart is carried out with the help of OC curve analysis and ARL curve analysis.


2017 ◽  
Vol 32 (1) ◽  
Author(s):  
Azamsadat Iziy ◽  
Bahram Sadeghpour Gildeh ◽  
Ehsan Monabbati

AbstractControl charts have been established as major tools for quality control and improvement in industry. Therefore, it is always required to consider an appropriate design of a control chart from an economical point of view before using the chart. The economic design of a control chart refers to the determination of three optimal control chart parameters: sample size, the sampling interval, and the control limits coefficient. In this article, the double sampling (DS)


2011 ◽  
Vol 467-469 ◽  
pp. 13-18
Author(s):  
Ying Zhe Xiao ◽  
Ya Nan Huang

This paper states not only the development course of quality management but also the actuality that the packaging & printing enterprise confronts. In addition, it explains the necessity of applying SPC. The first, it is discussed and studied the basic tool of SPC-control chart for statistical process. Based on this way, -R control chart is used to analyze and control the overprint precision. According to these control charts, the spot staffs can find the deficiencies in the quality control itself by finding the correlative process fluctuation and the slow variation in time. In addition, SPC provides objective bases for the quality management personnels to assess semi-products or products quality.


Author(s):  
Dushyant Tyagi ◽  
Vipin Yadav

Statistical Process Control (SPC) is an efficient methodology for monitoring, managing, analysing and recuperating process performance. Implementation of SPC in industries results in biggest benefits, as enhanced quality products and reduced process variation. While dealing with the theory of control chart we generally move with the assumption of independent process observation. But in practice usually, for most of the processes the observations are autocorrelated which degrades the ability of control chart application. The loss caused by autocorrelation can be obliterated by making modifications in the traditional control charts. The article presented here refers to a combination of EWMA and CUSUM charting techniques supplementing modifications in the control limits. The performance of the referred scheme is measured by comparing average run length (ARL) with existing control charts. Also, the referred scheme is found reasonably well for detecting particularly smaller displacements in the process.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 154
Author(s):  
Anderson Fonseca ◽  
Paulo Henrique Ferreira ◽  
Diego Carvalho do Nascimento ◽  
Rosemeire Fiaccone ◽  
Christopher Ulloa-Correa ◽  
...  

Statistical monitoring tools are well established in the literature, creating organizational cultures such as Six Sigma or Total Quality Management. Nevertheless, most of this literature is based on the normality assumption, e.g., based on the law of large numbers, and brings limitations towards truncated processes as open questions in this field. This work was motivated by the register of elements related to the water particles monitoring (relative humidity), an important source of moisture for the Copiapó watershed, and the Atacama region of Chile (the Atacama Desert), and presenting high asymmetry for rates and proportions data. This paper proposes a new control chart for interval data about rates and proportions (symbolic interval data) when they are not results of a Bernoulli process. The unit-Lindley distribution has many interesting properties, such as having only one parameter, from which we develop the unit-Lindley chart for both classical and symbolic data. The performance of the proposed control chart is analyzed using the average run length (ARL), median run length (MRL), and standard deviation of the run length (SDRL) metrics calculated through an extensive Monte Carlo simulation study. Results from the real data applications reveal the tool’s potential to be adopted to estimate the control limits in a Statistical Process Control (SPC) framework.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Johnson A. Adewara ◽  
Kayode S. Adekeye ◽  
Olubisi L. Aako

In this paper, two methods of control chart were proposed to monitor the process based on the two-parameter Gompertz distribution. The proposed methods are the Gompertz Shewhart approach and Gompertz skewness correction method. A simulation study was conducted to compare the performance of the proposed chart with that of the skewness correction approach for various sample sizes. Furthermore, real-life data on thickness of paint on refrigerators which are nonnormal data that have attributes of a Gompertz distribution were used to illustrate the proposed control chart. The coverage probability (CP), control limit interval (CLI), and average run length (ARL) were used to measure the performance of the two methods. It was found that the Gompertz exact method where the control limits are calculated through the percentiles of the underline distribution has the highest coverage probability, while the Gompertz Shewhart approach and Gompertz skewness correction method have the least CLI and ARL. Hence, the two-parameter Gompertz-based methods would detect out-of-control faster for Gompertz-based X¯ charts.


2012 ◽  
Vol 12 (04) ◽  
pp. 1250083
Author(s):  
PERSHANG DOKOUHAKI ◽  
RASSOUL NOOROSSANA

In the field of statistical process control (SPC), usually two issues are addressed; the variables and the attribute quality characteristics control charting. Focusing on discrete data generated from a process to be monitored, attributes control charts would be useful. The discrete data could be classified into two categories; the independent and auto-correlated data. Regarding the independence in the sequence of discrete data, the typical Shewhart-based control charts, such as p-chart and np-chart would be effective enough to monitor the related process. But considering auto-correlation in the sequence of the data, such control charts would not workanymore. In this paper, considering the auto-correlated sequence of X1, X2,…, Xt,… as the sequence of zeros or ones, we have developed a control chart based on a two-state Markov model. This control chart is compared with the previously developed charts in terms of the average number of observations (ANOS) measure. In addition, a case study related to the diabetic people is investigated to demonstrate the applicability and high performance of the developed chart.


2013 ◽  
Vol 845 ◽  
pp. 696-700
Author(s):  
Razieh Haghighati ◽  
Adnan Hassan

Traditional statistical process control (SPC) charting techniques were developed to monitor process status and helping identify assignable causes. Unnatural patterns in the process are recognized by means of control chart pattern recognition (CCPR) techniques. There are a broad set of studies in CCPR domain, however, given the growing doubts concerning the performance of control charts in presence of constrained data, this area has been overlooked in the literature. This paper, reports a preliminary work to develop a scheme for fault tolerant CCPR that is capable of (i) detecting of constrained data that is sampled in a misaligned uneven fashion and/or be partly lost or unavailable and (ii) accommodating the system in order to improve the reliability of recognition.


Sign in / Sign up

Export Citation Format

Share Document