scholarly journals Design and Performance Analysis of Grid Connected Solar Power System by Fuzzy Control Algorithm

2019 ◽  
Vol 8 (4) ◽  
pp. 10078-10082

In this paper we propose the fuzzy logic controller based solar fed grid via various loads. Normally present situation solar power play a vital role to meet the load demand. Solar power is the free from pollution and cost free fuel so in this paper I propose the solar based grid integrated framework, it consist of dc-dc boost converter, 3-phase voltage source inverter and fed to grid via various loads. MPPT based fuzzy logic controller is used to obtain the maximum power from the solar. But our proposed solar generation is intermittent in nature so before supplying this power to the load as well as grid we can control and enhance the power quality by utilizing FLC. This FLC control scheme effectively controls the harmonics developed in the grids. Current harmonics and Voltage flickers developed in the PV integrated grid due to non linear loads and critical loads present in the network. The proposed system is verified in MATLAB/SIMLINK.

Author(s):  
S. Saravana Kumar ◽  
K. Latha

Abstract The application of control strategies in wastewater treatment plants has increased to improve its performance of treating the influent. Fuzzy Logic controller plays a vital role in this work and the simulation work is being carried out in Benchmark simulation model no.1 (BSM1) framework. The attempted work proposes two control schemes with the objectives of improving the effluent quality and minimizing the number of measurements taken from the plant. The design of fuzzy control schemes is based on 5 inputs and 6 outputs in order to accomplish the objectives. Experimental results show improvement in the effluent quality and increase in the efficacy of the control system. The proposed design is implemented using MATLAB with the adaptation of 2014a.


2019 ◽  
Vol 3 (1) ◽  
pp. 186-192
Author(s):  
Yudi Wibawa

This paper aims to study for accurate sheet trim shower position for paper making process. An accurate position is required in an automation system. A mathematical model of DC motor is used to obtain a transfer function between shaft position and applied voltage. PID controller with Ziegler-Nichols and Hang-tuning rule and Fuzzy logic controller for controlling position accuracy are required. The result reference explains it that the FLC is better than other methods and performance characteristics also improve the control of DC motor.


2020 ◽  
Vol 12 (2) ◽  
pp. 100-110
Author(s):  
Muhammad Aditya Ardiansyah ◽  
Renny Rakhmawati ◽  
Hendik Eko Hadi Suharyanto ◽  
Era Purwanto

Beragamnya metode yang ditawarkan oleh fuzzy logic kontroller membuat sebagaian orang meneliti mengenai perbedaan metode inferensi yang digunakan oleh fuzzy logic controller. Sejauh ini terdapat tiga metode fuzzy logic kontroller yang telah dikembangkan yaitu Mamdani, Sugono dan Sukamoto. Pada jurnal ini penggunaan fuzzy logic kontroller akan dievaluasi dengan menggunakan motor dc penguat terpisah sebagai beban untuk melakukan pengaturan kecepatan motor dc. Pada paper ini tujuan utamanya adalah dapat mengendalikan kecepatan dari motor DC Penguatan Terpisah dengan mengatur tegangan jangkar dari motor tersebut. DC motor merupakan salah satu jenis motor memiliki banyak aplikasi dan memiliki kemudahan untuk mengatur kecepatan pada motor tersebut. Logika fuzzy yang digunakan pada studi ini adalah inferensi sugeno dimana dengan konfigurasi Multiple Input Single Output (MiSo). Dimana input berupa error dan perubahan error dan output berupa duty cycle dikarenakan yang dikendalikan oleh logika fuzzy adalah Boost Converter selaku controlled voltage source. Target pada jurnal ini adalah dari kecilnya nilai steady – state error dan minimnya osilasi sehingga mampu membuat sistem lebih stabil. Pada studi ini, Hasil pengujian dilakukan dengan menggunakan Simulink by Matlab dengan Hasil pengujian berupa error rata rata sebesar 5.36%.


2013 ◽  
Vol 64 (3) ◽  
pp. 143-151
Author(s):  
Farid Bouchafaa ◽  
Mohamed Seghir Boucherit ◽  
El Madjid Berkouk

Voltage source multilevel inverters have become very attractive for power industries in power electronics applications during last years. The main purposes that have led to the development of the studies about multilevel inverters are the generation of output voltage signals with low harmonic distortion; the reduction of switching frequency. A serious constraint in a multilevel inverter is the capacitor voltage-balancing problem. The unbalance of different DC voltage sources of five-level neutral point clamping (NPC) voltage source inverter (VSI) constitutes the major limitation for the use of this new power converter. In order to stabilize these DC voltages, we propose in this paper to study the cascade constituted by three phases five-level PWM rectifier, a clamping bridge and five-level NPC (VSI). In the first part, we present a topology of five-level NPC VSI, and then they propose a model of this converter and an optimal PWM strategy to control it using four bipolar carriers. Then in the second part, we study a five-level PWM rectifier, which is controlled by a multiband hysteresis strategy. In the last part of this paper, the authors study shows particularly the problem of the stability of the multi DC voltages of the inverter and its consequence on the performances of the induction motors (IM). Then, we propose a solution to the problem by employed closed loop regulation using PI regulator type fuzzy logic controller (FLC). The results obtained with this solution confirm the good performances of the proposed solution, and promise to use the inverter in high voltage and great power applications as electrical traction.


2020 ◽  
Vol 53 (5) ◽  
pp. 725-731
Author(s):  
Mercy Rosalina Kotapuri ◽  
Rajesh Kumar Samala

The demand on the power system rising more rapidly is causing to increase the power system size and capacity. There is a need of interconnection of various generating stations to meet the increased load demand. Economical unit commitment is necessary for plant operation with the advancement in power system integration. The Economical Power Dispatch (EPD) is to find the most favourable combination of generating systems output powers which reduce the fuel cost by satisfying all system constraints. This research involves the fuzzy logic controller (FLC) has been hybridized with Ant-Lion Optimization (ALO) algorithm for EPD. By using this new hybrid technique, minimization of total operating cost by economically dispatch the power to meet the required load and also minimization of system total losses by optimum allocation of DG units were done. Fuel cost function and demand on system are modeled by fuzzy membership functions. The ALO is used to obtain the schedule the committed generating unit’s outputs so as to meet the required load demand. This proposed FLC based ALO technique executed with MATLAB software and applied on IEEE-30 system. Effectiveness of this projected algorithm is determined and evaluated with standalone techniques like conventional ALO, ALO-PSO algorithms.


Author(s):  
Bennett Breese ◽  
Drew Scott ◽  
Shraddha Barawkar ◽  
Manish Kumar

Abstract Tethered drone systems can be used to perform long-endurance tasks such as area surveillance and relay stations for wireless communication. However, all the existing systems use tethers only for data and power transmission from a stationary point on the ground. This work presents a control strategy that enables a quadcopter to follow a moving tether anchor. A force feedback controller is implemented using Fuzzy Logic. Using force-based strategy provides effective compliance between the tether’s anchor and the drone. The drone can thus be controlled by mere physical movement/manipulation of tether. This enhances the safety of current tethered drone systems and simplifies the flying of drones. Fuzzy Logic provides an intuitive edge to the control of such systems and allows handling noise in force sensors. Extensive simulation results are presented in this paper showing the effectiveness of the proposed control scheme.


Author(s):  
D. V. N. Ananth ◽  
Lagudu Venkata Suresh Kumar ◽  
Tulasichandra Sekhar Gorripotu ◽  
Ahmad Taher Azar

Short-term load forecasting (STLF) is an integral component of energy management systems. In this paper, fuzzy logic-based algorithm is used for short-term load forecasting. The load changes over time and the goal is to satisfy the shift in demand and to maintain a fault as low as possible between the reference and real powers. The error in the load demand in mega-watt (MW) is compared with proposed technique as well as conventional methods. Three cases were investigated in which the load changes were 1) more random in nature, but the variance to the reference was more; 2) the random load changes were simpler, but a little different from the reference; and lastly, 3) the load changing was random, and the reference deviation was maximum. The results are analyzed for different load changes, and the corresponding results are verified using MATLAB. The deviation of the error value in load response is less experienced with a fuzzy logic controller than with a traditional system, and in fewer iterations, the objective function is also achieved.


Sign in / Sign up

Export Citation Format

Share Document