scholarly journals Forecasting the Finest Firmness of Biocomposites using Response Surface Design Methodology

2020 ◽  
Vol 8 (6) ◽  
pp. 3958-3962

Natural fibers are considered likely to be used in polymer composite materials as reinforcing agents because of their main advantages such as fine strength and rigidity, low cost, environmentally friendly, degradable and renewable material. A study was conducted to assess the impact of properties of bicomposite made from cardanol resin banana fibers. The banana fiber extracted from the banana stem was treated with alkali to enhance the interfacial linkage around fiber and cardanol resin. Biocomposite was manufactured using formaldehyde mixed with cardanol oil to form cardanol resin mixed with banana fiber using compression moulding Techniques with different process factors such as fiber weight (5%, 10%, 15%, 20%, and 25%) different fiber length (5, 10, 15, 20, and 25 in mm) and alkali treatment (varying in 1%, 3%, 5%, 7% and 9%. The developed banana fiber reinforced composite were then characterized by impact testing showing strong significance and association in DOE using 15.2% fiber weight response surface methodology with 15.3 mm fiber length and 4.7% alkaline treated. Thus we examined the effect of the above factors on impact and suggested the best combinations of factors for composite processing

2015 ◽  
Vol 766-767 ◽  
pp. 104-109
Author(s):  
P. Parandaman ◽  
M. Jayaraman

The present work investigates the effect of hybridization of sugarcane bagasse and banana fibers as reinforcements in the polymer matrix. Composites made from natural fibers possess favourable properties like low cost, light weight, high strength and eco-friendly nature compared to synthetic fibers. Structural applications such as aerospace and automobile industries moving towards the use of these natural composites. In this research work two lightweight composite materials were developed, one with a linear pattern and other with chopped pattern of sugarcane bagasse and banana fiber reinforcements. The developed composites were subjected to different tests to investigate their mechanical behaviour. Both the developed specimens were investigated for their tensile strength, hardness, and water absorption capacity and compared their behaviour. It is observed from the test results, the composite with the chopped fiber reinforcement possess better mechanical properties compared to the linear reinforcement.


2021 ◽  
Vol 8 ◽  
Author(s):  
Li Juncheng ◽  
Chen Gang ◽  
Lu Yonggang ◽  
Huang Fenglei

Taylor impact test is characterized by high impact energy, low cost, and good repeatability, giving it the technical foundation and development potential for application in high-g loading. In this paper, the feasibility of performing high-g load impact testing to a missile-borne recorder by conducting Taylor impact test was studied by combining simulation analyses with experimental verification. Acccording to the actual dimensions of the missile-borne recorder, an experimental piece was designed based on the Taylor impact principle. The impact loading characteristics of the missile-borne recorder were then simulated and analyzed at different impact velocities. In addition, the peak acceleration function and the pulse duration function of the load were fitted to guide the experimental design. A Taylor-Hopkinson impact experiment was also conducted to measure the impact load that was actually experienced by the missile-borne recorder and the results were compared with the results of strain measurements on the Hopkinson incident bar. The results showed that the peak value of impact load, the pulse duration and the waveform of the actual experimental results were in good agreement with the results predicted by the simulations. Additionally, the strain data measured on the incident bar could be used to verify or replace the acceleration testing of the specimen to simplify the experimental process required. Based on the impact velocity, high-g loading impact was achieved with peak values in the 7,000–30,000 g range and durations of 1.3–1 ms, and the waveform generated was a sawtooth wave. The research results provide a new approach for high amplitude and long pulse duration impact loading to large-mass components, and broaden the application field of Taylor impact test.


2019 ◽  
Vol 69 (335) ◽  
pp. 197 ◽  
Author(s):  
T. O. Suoware ◽  
S. O. Edelugo ◽  
B. N. Ugwu ◽  
E. Amula ◽  
I. E. Digitemie

Residential housing is a critical aspect of human living and in developing countries this is a mirage due to high cost of building materials. In order to meet the needs for affordable housing with low cost materials as well as meet required fire safety standards, this research developed flame retarded fibreboards with oil palm residue reinforced in polyester resin, incorporating 0, 12 and 18% flame retardant loading using hand lay-up compression moulding. The fibreboards were tested for impact, thermal and flammability properties. Based on experiments, it was found that 12% aluminum tri-hydroxide fibreboard meets the impact and thermal limitations while the 18% hybrid formulation meets the required fire safety standard for building interior applications which will benefit rural dwellers in Nigeria and in similar climes around the world seeking to substitute conventional materials with the advantage of low cost, easy to process, biodegradable, environmentally benign and flame retarded composite material.


2020 ◽  
Vol 1012 ◽  
pp. 20-25
Author(s):  
Fabio da Costa Garcia Filho ◽  
Michelle Souza Oliveira ◽  
Foluke Salgado de Assis ◽  
Artur Camposo Pereira ◽  
Fernanda Santos da Luz ◽  
...  

Banana fibers are among the natural lignocellulosic fibers with greater potential for use as reinforcement in polymer matrix composites. Attractive mechanical and physical properties as well as low cost of production are considered as the main advantages on the use of such fibers. This works aims to study the mechanical behavior of the banana fiber when used as filler to the two most commonly used thermoset matrices (epoxy and polyester). The specimens were produced with up to 30 vol% of banana fibers for both polymeric matrices. Tensile strength tests as well as macroscopic and microscopic evaluation of the fractured surface were carried out. It was shown that, indeed, the banana fiber provided a substantial reinforcement for both matrices. On the other hand, mechanical strength associated with the composite epoxy/banana was more than 50% higher than the exhibit by the polyester/banana one. Such behavior could be associated with the interfacial strength regarding the fiber and the matrix.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
P. Sivaranjana ◽  
V. Arumugaprabu

AbstractThe usage of banana natural fibers along with polymer matrix composites had created much interest among the researchers due to their low cost, easy availability, strength and enhancement in properties such as mechanical, wear, electrical and thermal. Banana plant is cultivated all over the world which is familiarly used as food products especially banana fruit as well as many household items made from banana fibers. The natural fiber extracted from the banana stem proves to be a potential reinforcement in the composite manufacturing. This review is very much needed because of the enormous research reported on the banana fiber reinforced polymer composites, with such an excellent property offered by this banana fiber reinforcement the impact of hybridization and its need also to be addressed. This brief review article gives a detail information about the combinations of various hybrid composites produced using the banana fiber along with various other natural/synthetic fibers in the polymer matrixes and its performance improvement especially in the mechanical and thermal properties. From the review it was inferred that 30–50% increase in all the mechanical properties such as Tensile, Flexural and Impact strength. Also in addition an enhancement in thermal and moisture resistance also noted. In addition during this review the research gap observed is that the development of bio composites based on banana fiber is very limited and also the influence of banana fiber along with bio resin needs to be studied. The properties such as fatigue, fire resistance also to be analyzed using the banana fiber reinforcement.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3744
Author(s):  
K. Z. M. Abdul Motaleb ◽  
Abdul Ahad ◽  
Ginta Laureckiene ◽  
Rimvydas Milasius

Four types of nonwovens were prepared from different sections of the banana tree e.g., outer bark (OB), middle bark (MB), inner bark (IB) and midrib of leaf (MR) by wet laid web formation. They were reinforced with two different types of matrices e.g., epoxy and polyester, to make eight variants of composites. Treatments including alkali on raw fibers, water repellent on nonwovens and gamma radiation on composites were applied in order to investigate their effects on properties of the composites such as water absorbency, tensile strength (TS), flexural strength (FS) and elongation at break (Eb%). Variations in the morphological structure and chemical composition of both raw banana fibers and fibers reinforced by the treatments were analyzed by Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM). OB composites exhibited higher water absorbency, TS and FS and lower Eb% compared to other types of composites. Epoxy composites were found to have 16% lower water absorbency, 41.2% higher TS and 39.1% higher FS than polyester composites on an average. Water absorbency of the composites was reduced 32% by the alkali treatment and a further 63% by water repellent treatment. TS and FS of the composites were on average improved 71% and 87% by alkali treatment and a further 30% and 35% by gamma radiation respectively.


2011 ◽  
Vol 117-119 ◽  
pp. 873-875
Author(s):  
Noor Hisyam Bin Noor Mohamed ◽  
Hasmiryadie Juneh ◽  
Mahshuri Yusof

Natural fibers are now becoming a subject of interest to replace synthetic fiber as reinforcement materials where the development of natural fiber composites has been conducted in the last few decades. The objective of this research is to investigate the energy absorption capacity of banana fiber polyester composite and its specific energy absorption capacity as well. Banana fibers are extracted and cut into 10mm, 20mm and 30mm fiber length. Fabrication of rectangular bar as composite samples with different banana fiber length and fiber volume fraction (1%, 2%, and 3%) were conducted and the results are studied and analyzed. The information on energy absorption and specific energy absorption capacity are useful for applications such as automotive structures where the ability to absorb impact may save life. The increase of banana fiber content and length shows an increase of maximum load and energy absorption values for all specimens.


2015 ◽  
Vol 815 ◽  
pp. 106-110 ◽  
Author(s):  
Juliana Anggono ◽  
Suwandi Sugondo ◽  
Steven Henrico ◽  
Hariyati Purwaningsih

Milling sugarcanes to produce sugar generates by-product called bagasse. Due to the large availability and low cost, the potential of obtaining renewable and biodegradable fibers from bagasse had been explored. To produce fibers from these bagasse, the bagasse was treated in alkali solution using 14 % v/v calcium hydroxide, Ca (OH)2 at high temperature (60-70°C) for 4 hours. After treatment and washed to remove dissolved substances, the fibers were cut into 3 and 5 cm length. Some fibers were prepared in their original length. These fibers were mixed with polypropylene (PP) matrix in weight % ratios of bagasse fibers/PP 20/80, 25/75, and 30/70 and hotpressed to make composite samples. Composites produced were characterised with tensile test to evaluate their tensile properties. Scanning electron microscopy (SEM) was performed on the fiber surface as well as on the fracture area of the tensile tested samples. Tensile strength of the composite shows an increase with the increase of the fiber length and weight % ratios of bagasse fibers/PP up to 25/75 and decreases when bagasse fibers were added to 30 wt.%. The highest strength of 11,30 MPa was obtained when 5 cm fibers were used in a weight % ratio of bagasse fibers/PP at 25/75. SEM study found a greater number of fibers oriented perpendicular to the tension direction.


2020 ◽  
Vol 7 (3) ◽  
pp. 30-34
Author(s):  
Mr. Kannan ◽  
Saravanan P ◽  
Srinivasaperumal K P

The Clutch Disk or plate is a part of the manual transmission system for your vehicle that delivers power from the engine to the transmission. It is mounted b/w the pressure plate & the flywheel. For high performance automobiles it is constructed from highly durable steel or sometimes other material. Performance of Vehicle Clutch plates on pad-to-disk interface touch conditions. The purpose of this study is to evaluate the impact on the friction & wear of Clutch Plate material from different material composition. If we use the composite material the cost instead of the traditional material, weight can be reduced and the life of the brake material can be extended at low cost. In our research, material strength is experimentally investigated to predict compression, tensile & impact testing in both materials (E-glass & Jute fiber) to choose the better material of single plate clutch


Author(s):  
Khan Asem Ali

Abstract: The world that is evolving at a very fast pace, the anxiety of the environment pollutions increasing has tip the necessity for new eco-friendly materials, researchers have started to develop sustainable materials that are renewable as well as biodegradable in nature. The natural fibers have certain advantages above synthetic fiber materials, they are lower in cost and density with comparable strength. In the present study, banana fiber is reinforced in the epoxy matrix and a composite material is prepared and impact strength of these composites are estimated. This composite samples are prepared by Wet lay-up method with varying banana fibers volume percentages by (10%, 20%, 30%, 40%) and by changing the fibers orientation in the epoxy matrix by (00 ,900 , woven Bi-directional). The results shows that there is gradual increase in the impact strength of the epoxy for 900 banana fiber orientation, the optimum results were found for 40% banana fiber and 60% epoxy resin, as for woven BD there was an increase in the impact strength up to 20% banana fiber reinforcement, as for 00 orientation the strength increases up to 10% fiber reinforcement above this there was a drastic reduction in the impact strength. Keywords: Banana Fiber, Epoxy Resin, Volume percent, Fiber Orientation, Impact Strength


Sign in / Sign up

Export Citation Format

Share Document