Physical and mechanical properties recycled hot mix asphalt based on milled asphalt with the plastic fiber addition

2021 ◽  
Vol 2021 (23) ◽  
pp. 76-85
Author(s):  
Oksana Demchenko ◽  
◽  
Roman Mishchenko ◽  
Volodymyr Ilchenko ◽  
◽  
...  

Introduction. The current state of the network of public roads due to the negative impact of climatic factors and ever-increasing traffic loads characterized by significant amounts of deformation and destruction of the road structure so requires significant material costs for maintenance and gradual improvement of a transport and operational condition according to the operating regulatory requirements.Problem Statement. One of the promising areas to reduce the cost of road construction is manufacturing the recycled hot mix asphalt based on milled asphalt, which is usually formed in scarifying of the road surface layers during repair and construction works, with the plastic fiber addition obtained from household plastic waste. This combination of secondary materials will not only get the economic effect of reducing the cost of purchasing new road construction materials but also improve the environmental situation through the use of household waste.Purpose. Investigation of physical and mechanical properties of recycled hot mix asphalt based on milled asphalt with the plastic fiber addition Materials and Methods. It was established the manufacturing possibility of recycled hot mix asphalt based on milled asphalt with the plastic fiber addition. Test specimens performance measuring was conducted to determine the average density of the material, water saturation, swelling at ultimate compressive strength in the laboratory conditions according to standardized techniques by current regulations.Results. The results of experimental studies regarding the manufacturing features and physical and mechanical properties of recycled hot mix asphalt based on milled asphalt with the addition of plastic fiber obtained from household waste are shown.Conclusion. The correspondence of the manufactured specimens of recycled hot mix asphalt to regulations is established as well as its road construction application options.Keywords: asphalt pavement, recycled hot mix asphalt, hot recycled, milled asphalt, plastic fiber, (RHMA), reclaimed asphalt pavement (RAP).

Author(s):  
V. V. Ilchenko ◽  
V. V. Tymoshevskyi ◽  
R. A. Mishchenko ◽  
D. S. Lyashko ◽  
V. V. Riznyk

The most common ways of milled asphalt re-use, what is formed during road topping repair is considered. The results of experimental studies of preparation technology features and physical and mechanical properties of recycled hot mix asphalt determination based on milled asphalt with plastic fiber addition that obtained from industrial waste is presented. Defined regulations correspondence obtained recycled hot mix asphalt and ways of their use in road construction is determined.


2021 ◽  
Vol 2124 (1) ◽  
pp. 012023
Author(s):  
L V Zakrevskaya ◽  
K A Nikolaeva ◽  
A I Gandelsman ◽  
P A Orekhov

Abstract Increasing the volume of road construction is one of the priority areas of infrastructure development in any country. When building roads, it is preferable to use local materials to reduce the cost of their transportation, therefore, it is advisable to build the roadbed on local soils. It is worth noting that clay water-saturated soils are the most common, which complicates the construction of the road due to some features of this type of soil. The object of the study is a water-saturated clay with the following characteristics: natural humidity from 25.3 % to 28.1% by weight, optimal humidity from 11.8 % to 16.7% by weight, the number of plasticity from 0.118 to 0.153. Clay soils have a number of features: waterlogged soils are difficult to compact and develop, it is quite problematic to dry them, and thixotropy is also characteristic of clay soils. In this regard, it is most advisable to use the method of complex mineral binders to optimize their physical and mechanical properties. In the course of laboratory studies, compositions of soil compositions with the addition of lime waste and superplasticizer P-17 were developed. The dependence of the strength on the consumption of mineral binders and surfactants is established: the maximum compressive strength of the soil being fixed is achieved at a lime content of 25 wt.% and at a P-17 content in the range of 0.10-0.5 wt.%.


2012 ◽  
Vol 166-169 ◽  
pp. 2892-2895
Author(s):  
Jue Jie Li ◽  
Ya Qiong Wang ◽  
Jian Gang Qiao

As asphalt Pavement possesses the characteristics of comfort and ease to maintenance, it exerts usually in the road construction. Heavy axle load and high wheel pressure make the asphalt road prone to rutting damage. Based on the constitutive model of asphalt mixture, the paper analyzes mechanical properties of modulus, shear force and peak deflection value for different asphalt surface course after adding the rutting agent using the finite element method. Finally the paper acquires mechanism of variation in rutting, which provides an important theoretical basis for the final asphalt pavement structural design.


2013 ◽  
Vol 740 ◽  
pp. 759-762
Author(s):  
Hao Zeng Bao

In many areas, there are still a development road construction materials, traditionally, often use reinforced concrete, asphalt and other adhesive method to strengthen the low strength of rock and soil anti-freeze expansion coefficient; And now all countries in the world are studying how to use industrial production waste development of new composite materials. One of the most development potential, the production of industrial waste - slime. This paper USES the Russian kazan national construction university experimental methods, in the experiment to improve frost heaving soil physical and mechanical properties of the method for the synthesis of adhesive, based on the feasibility and applicability, environmental assessment of research and analysis, for the use of adhesive put forward a lot of reference value.


2021 ◽  
Vol 2021 (23) ◽  
pp. 31-42
Author(s):  
Anatolii Tsynka ◽  
◽  
Andrii Hrinchuk ◽  
Ivan Rakovych ◽  
◽  
...  

Introduction. In the modern conditions of the pricing system in the construction of Ukraine, the key value have the estimated norms, which are presented in separate collections, the main purpose of which is to determine the standard quantity of resources required to perform a particular type of work as a basis for the transition to the cost indicators. In order to determine the cost of road work objectively and accurately, it is essential that the indicators of estimated norms meet the requirements of regulatory documents and modern methods of execution of road works.Problematics. In connection with the active improvement of the regulatory base of the road construction industry, permanent upgrade of road organizations technique fleet, the introduction of new technologies and materials in construction and operation of roads, improving the methods of work there is a discrepancy between the existing resource element of estimated norms and the actual conditions of work in terms of built-up labor costs, the operation time of machines and mechanisms and the range of materials. Accordingly, it affects the reliability and accuracy of determining the cost of road works.Purpose. Improvement and harmonization with actual working conditions and requirements of regulatory documents of industry regulatory and estimate base of resource elementary estimated norms for work performed during construction, reconstruction, repair and operational maintenance of roads and bridges to ensure reliable and valid technical, economic and estimated calculations.Materials and methods. During work performance the analysis of the regulatory documentation, establishing the requirements to the technology of road works and materials has been carried out. A number of chronometric observations with the measurement of time of road works in full-scale conditions was carried out. The obtained data were summarized, averaged and on their basis the indicators of the resource element of the estimated norms were estimated.Results. A review of the main amendments and additions, which came into force after the approval of Amendment No 2 SOU 42.1-37641918-035:2018 [1] and Amendment No 2 SOU 42.1-37641918-071:2018 [2], which were developed to improve the regulatory-estimate base for the calculation of road works, taking into account the requirements and provisions of existing regulatory documents taking into account the current state of scientific and technological progress in the road sector.Conclusions. The above analysis of the amendments that came into force with the approval of [1]. and [2] will systematize the innovations provided by the requirements of current regulatory documents on the calculation of the cost of road works and the development of relevant documents at all stages of the investment process, planning and organization of road works, as well as the writing-off of material resources. Review and systematization of recent improvements in the estimated regulatory documents for road works will provide an opportunity to optimally plan the use of available material, labor and financial resources, often limited.Keywords: public road, operational maintenance, investment documentation, overhaul and current repairs, machine, mechanism, regulatory document, resource element estimate norm, Standard of Organization of Ukraine.


2020 ◽  
Vol 12 (20) ◽  
pp. 8612 ◽  
Author(s):  
Edoardo Bocci ◽  
Emiliano Prosperi ◽  
Volkmar Mair ◽  
Maurizio Bocci

In road construction, it can happen that, for different reasons, the time between hot-mix asphalt (HMA) production and paving is extended to some hours. This can be reflected in several problems such as mix cooling and temperature segregation, but also in an extremely severe bitumen ageing due to its prolonged exposure to high temperatures. This paper deals with the investigation of these phenomena both in the laboratory and on site. In particular, the first part of the research aimed at observing the influence of the conditioning time, when the loose HMA is kept in the oven at a high temperature, on the mix properties. The second part focused on the ageing/cooling that happens on site during HMA hauling, as a function of time and type of truck. Temperatures were monitored using a thermal camera and different probes, and gyratory compactor specimens were produced by sampling some HMA from the trucks every 1 h for 3 h. The results showed that HMA stiffness rises if the time when the loose mix stays in the laboratory oven before compaction increases. However, on site, the HMA volumetric and mechanical properties do not change with hauling time up to 3 h, probably because the external material in the truck bed protects the HMA core from the access of oxygen, hindering bitumen oxidation and loss of volatiles. The temperature monitoring highlighted that temperature segregation, after 3 h hauling, can be higher than 30 °C but it can be reduced using insulated truck beds.


2019 ◽  
Vol 9 (14) ◽  
pp. 2783 ◽  
Author(s):  
Sirin ◽  
Paul ◽  
Kassem ◽  
Ohiduzzaman

Asphalt mixtures are subjected to short-term aging during the production, placement, and compaction processes. Proper evaluation of asphalt pavement performance relies on the accurate characterization of asphalt mixtures during the design stage. In this study, three different loose asphalt mixtures often used in Qatar were evaluated to develop a laboratory short-term aging procedure. Sample mixtures 1 and 3 were collected from a construction site, while mixture 2 was obtained from an asphalt plant. Virgin aggregates and binders were also collected to reproduce the mixtures in the laboratory. Laboratory-produced mixtures were conditioned at 135 °C using various time durations. The mechanical properties of laboratory-produced mixtures were compared to those of mixtures produced on site. The results of the mechanical and binder testing demonstrated that the proper short-term aging protocol for asphalt mixtures often used in road construction in the State of Qatar would involve heating asphalt mixtures for 4 h at 135 °C before laboratory compaction.


2020 ◽  
Vol 7 ◽  
Author(s):  
Alessandra Bonoli ◽  
Anna Degli Esposti ◽  
Chiara Magrini

The concept of sustainability in the road construction sector is a complex issue because of the various steps that contribute to the production and release of greenhouse gas (GHG) emissions. Addressing this issue, the European Commission has put various policy initiatives in place to encourage the construction industry to adopt circular economy (CE) and industrial symbiosis (IS) principles e.g., the use of recycled materials. Cooperativa Trasporti Imola (CTI), a company located in the Emilia-Romagna region (Italy), has been chosen for the current case study to examine practices, management, and the industrial symbiosis network among various companies in the road construction and rehabilitation sector. In this regard, the use of steel slags, obtained by an electric arc furnace (EAF), and reclaimed asphalt pavement (RAP), obtained by the deconstruction and milling of old asphalt pavement have been investigated. Two mixtures of recycled hot Mix Asphalt (HMA) i) were prepared incorporating different recycled material percentages for the wearing and binder course, respectively, ii) were characterized in terms of size distribution, strength modulus and volumetric properties, iii) and finally were compared to the performances of two mixtures entirely designed by virgin materials for the wearing and binder course, respectively. Therefore, the Life Cycle Assessment (LCA) tool was chosen to evaluate the environmental impacts that affect the designed road life cycle. The results show that recycling RAP and EAF slags in a CTI batch plant provides benefits by reducing the consumption of virgin bitumen and aggregates and by reducing CO2eq emissions. Finally, practical implications on the use of recycled materials in new asphalt mixtures from a life cycle and industrial symbiosis perspective are provided.


2018 ◽  
Vol 2 (3) ◽  
Author(s):  
Md. Sahadat Hossain 3 ◽  
Md. Nazrul Islam 1* ◽  
M A Gafur 2

The composites of biodegradable high density polypropylene (HDPE) reinforced with short coir fiber were prepared by melt mixing followed by hot press molding. The effect of fiber addition on some physical and mechanical properties was evaluated. Different process parameters (e.g. mixing time, heating temperature and time, cooling time etc.) were established for good sample preparation The effects of fiber addition on some physical and mechanical properties were evaluated. The mechanical properties were studied via Universal Testing Machine (UTM). The density was increased with the increase of fiber addition. The tensile strength (TS) of fabricated product increased with the increase of fiber addition up to 10% (by wt.) and then decreased continuously. The elongation of fabricated composites was decreased with the increase of fiber addition continuously. The changes in the mechanical properties were broadly related to the accompanying interfacial bonding of HDPE coir composites (HDPECC). To observe the hydrophilicity of the prepared composites was evaluated by the water uptake properties. The interfacial bonding of the fiber and matrix of the coir fiber reinforced composites was studied via scanning electron microscope. It revealed that the introduction of short coir fiber led to a slightly improved mechanical stability of PP- Coir composites. 


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Wei Hong ◽  
Qingshan Li ◽  
Guoquan Guan ◽  
Youbo Di ◽  
Jing Sun ◽  
...  

The anion rubber modified asphalt (ARMA) mixture was first successfully developed with a unique process. In the development process, rubber and asphalt were mixed in the same proportion. Furthermore, the microstructure and modification mechanism of the material were characterized by SEM, FT-IR, TG, and XRD tests. The mechanical property of the mixture was also tested in accordance with the relevant standards. In the end, the material’s capacity of releasing anion was measured by DLY-6A232 atmospheric ion gauge. The results indicated that the addition of anion additive into the rubber modified asphalt (RMA) was a mere physical mixture, and the anion additives and rubber particles uniformly dispersed in the ARMA. The addition of anion additive could improve the thermal stability of the RMA. Compared with the traditional asphalt pavement material, the ARMA material shows excellent mechanical properties as well as the ability of releasing anion. Moreover, the material has enormous economic and social benefits by taking full advantage of a large amount of waste tires, thus improving the road surrounding environment.


Sign in / Sign up

Export Citation Format

Share Document