scholarly journals IDENTIFICATION LOCAL ISOLATES OF Trichophyton mentagrophytes AND DETECTION OF KERATINASE GENE USING PCR TECHNIQUE

2020 ◽  
Vol 51 (6) ◽  
pp. 1534-1542
Author(s):  
Abbas & et al.

This study was aimed to identify dermatophytic selective isolate using PCR technique as a rapid molecular assay. The results of this study showed among 60 samples of patients suffering from ringworm  disease. forty isolates (66%) were Trichophyton  mentagrophytes  which diagnosed as dermatophytosis according to morphological and cultural methods. In order to investigate the ability of isolates to keratin analyses using solid medium supplemented with keratin azure , the results revealed that 20 isolates appeared best ability to keratin analysis and nine isolates had best ability for keratinase production in submerged culture. According to this results T. mantagrophytes  (K3) (had  higher activity for  keratinase) was chosen for  molecular identification. The results of PCR revealed that primer for18S rRNA gene of T. mentagrophytes K1 isolate and specific primer for subtilisin like protease gene were amplified  and appeared as  single DNA band with a molecular base of   690 bp and 623bp respectively .The blast result of sample sequences of amplified fragment revealed that the  isolate were 100% identical to reference sequence of T.mentagrophytes var. interdigtal and depending on  data base in NCBI The result  of PCR product for enzyme showed new type named GBF60362 (402)   subtilisin-like protease  related to T. mentagrophytes 1354684064 BFBSOLP00892.

Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 360-360 ◽  
Author(s):  
A. M. Al-Subhi ◽  
N. A. Al-Saady ◽  
A. J. Khan ◽  
M. L. Deadman

Eggplant (Solanum melongena L.) belongs to the family Solanaceae and is an important vegetable cash crop grown in most parts of Oman. In February 2010, plants showing phyllody symptoms and proliferation of shoots resembling those caused by phytoplasma infection were observed at Khasab, 500 km north of Muscat. Total genomic DNA was extracted from healthy and two symptomatic plants with a modified (CTAB) buffer method (2) and analyzed by direct and nested PCR with universal phytoplasma 16S rDNA primers P1/P7 and R16F2n/ R16R2, respectively. PCR amplifications from all infected plants yielded an expected product of 1.8 kb with P1/P7 primers and a 1.2-kb fragment with nested PCR, while no products were evident with DNA from healthy plants. Restriction fragment length polymorphism (RFLP) profiles of the 1.2-kb nested PCR products of two eggplant phyllody phytoplasma and five phytoplasma control strains belonging to different groups used as positive control were generated with the restriction endonucleases RsaI, AluI, Tru9I, T-HB8I, and HpaII. The eggplant phytoplasma DNA yielded patterns similar to alfalfa witches'-broom phytoplasma (GenBank Accession No. AF438413) belonging to subgroup 16SrII-D, which has been recorded in Oman (1). The DNA sequence of the 1.8-kb direct PCR product was deposited in GenBank (Accession No. HQ423156). Sequence homology results using BLAST revealed that the eggplant phyllody phytoplasma shared >99% sequence identity with Scaevola witches'-broom phytoplasma (Accession No. AB257291.1), eggplant phyllody phytoplasma (Accession No. FN257482.1), and alfalfa witches'-broom phytoplasma (Accession No. AY169323). The RFLP and BLAST results of 16S rRNA gene sequences confirm that eggplant phyllody phytoplasma is similar to the alfalfa phytoplasma belonging to subgroup 16SrII-D. To our knowledge, this is the first report of a phytoplasma of the 16SrII-D group causing witches'-broom disease on eggplant in Oman. References: (1) A. J. Khan et al. Phytopathology 92:1038, 2002. (2) M. A. Saghai-Maroof et al. Proc. Natl. Acad. Sci. USA, 81:8014, 1984.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Daniel Roush ◽  
Ana Giraldo-Silva ◽  
Ferran Garcia-Pichel

AbstractCyanobacteria are a widespread and important bacterial phylum, responsible for a significant portion of global carbon and nitrogen fixation. Unfortunately, reliable and accurate automated classification of cyanobacterial 16S rRNA gene sequences is muddled by conflicting systematic frameworks, inconsistent taxonomic definitions (including the phylum itself), and database errors. To address this, we introduce Cydrasil 3 (https://www.cydrasil.org), a curated 16S rRNA gene reference package, database, and web application designed to provide a full phylogenetic perspective for cyanobacterial systematics and routine identification. Cydrasil 3 contains over 1300 manually curated sequences longer than 1100 base pairs and can be used for phylogenetic placement or as a reference sequence set for de novo phylogenetic reconstructions. The web application (utilizing PaPaRA and EPA-ng) can place thousands of sequences into the reference tree and has detailed instructions on how to analyze results. While the Cydrasil web application offers no taxonomic assignments, it instead provides phylogenetic placement, as well as a searchable database with curation notes and metadata, and a mechanism for community feedback.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 916
Author(s):  
Sebastian Böttger ◽  
Silke Zechel-Gran ◽  
Daniel Schmermund ◽  
Philipp Streckbein ◽  
Jan-Falco Wilbrand ◽  
...  

Odontogenic abscesses are usually caused by bacteria of the oral microbiome. However, the diagnostic culture of these bacteria is often prone to errors and sometimes fails completely due to the fastidiousness of the relevant bacterial species. The question arises whether additional pathogen diagnostics using molecular methods provide additional benefits for diagnostics and therapy. Experimental 16S rRNA gene analysis with next-generation sequencing (NGS) and bioinformatics was used to identify the microbiome of the pus in patients with severe odontogenic infections and was compared to the result of standard diagnostic culture. The pus microbiome was determined in 48 hospitalized patients with a severe odontogenic abscess in addition to standard cultural pathogen detection. Cultural detection was possible in 41 (85.42%) of 48 patients, while a pus-microbiome could be determined in all cases. The microbiomes showed polymicrobial infections in 46 (95.83%) cases, while the picture of a mono-infection occurred only twice (4.17%). In most cases, a predominantly anaerobic spectrum with an abundance of bacteria was found in the pus-microbiome, while culture detected mainly Streptococcus, Staphylococcus, and Prevotella spp. The determination of the microbiome of odontogenic abscesses clearly shows a higher number of bacteria and a significantly higher proportion of anaerobes than classical cultural methods. The 16S rRNA gene analysis detects considerably more bacteria than conventional cultural methods, even in culture-negative samples. Molecular methods should be implemented as standards in medical microbiology diagnostics, particularly for the detection of polymicrobial infections with a predominance of anaerobic bacteria.


2021 ◽  
Vol 4 ◽  
Author(s):  
Daniel Teixeira ◽  
Heron Hilário ◽  
Gustavo Rosa ◽  
Guilherme Santos ◽  
Gilmar Santos ◽  
...  

The study of ichthyoplankton composition, abundance and distribution is paramount to understand the reproductive dynamics of local fish assemblages. The analysis of these parameters allows the identification of spawning sites, nursery areas and migration routes. However, due to the lack of characters in early life stages, the morphological identification of ichthyoplankton is often impractical and many studies identify only fish larvae. Additionally, its accuracy shows great variation between taxonomists and laboratories according to their experience and specialty. DNA barcoding emerged as an alternative to provide assertive identification of fish eggs and larvae, but it becomes too expensive and laborious when the study demands the processing of huge amounts of organisms. DNA metabarcoding can overcome these limitations as a rapid, cost-effective, broad and accurate taxonomy tool, allowing the identification of multiple individuals simultaneously. Here, we present the identification of a sample containing 68 fish eggs and another containing 293 fish larvae from a single site in the São Francisco River Basin, Eastern Brazil, through DNA metabarcoding. We used a low-cost saline DNA extraction followed by PCR amplification with three primer sets targeting the 12S rRNA gene: MiFish (~170bp), Teleo_1 (~60bp), and NeoFish (~190bp). The latter was recently developed by our research group specifically for the identification of Neotropical fishes. All the amplified samples were sequenced in a single multiplexed Illumina MiniSeq run. We performed the filtering steps and assigned Amplicon Sequence Variants (ASVs) using a DADA2/Phyloseq based pipeline and a custom 12S reference sequence database including 101 species and 70 genera from the Jequitinhonha and São Francisco basins. The species Cyphocharax gilbert, Leporinus taeniatus, Megaleporinus elongatus, Prochilodus argenteus, P. costatus and Psalidodon fasciatus were detected by all three primer sets in the larva pool, while Pterygoplichthys etentaculatus was detected solely by NeoFish (Fig. 1). Within the egg pool, all three markers detected the species Characidium zebra, Curimatella lepidura, M. elongatus, Pimelodus fur and P. costatus, but Brycon orthotaenia was detected only by NeoFish, P. maculatus only by Teleo, and P. pohli by MiFish and Teleo (Fig. 1). The consistency in species detection among all three markers underpins the credibility of this method to accurately describe the sample composition. Considering that most of species were exclusive to the larvae or egg pool, our experiment highlights the importance of including the identification of fish eggs in reproduction studies, as it can provide additional information about which species are spawning in an area. Furthermore, the application of DNA metabarcoding to the study of ichthyoplankton can help decision makers create more informed guidelines for conservation of economically and ecologically important fish species.


BioTechniques ◽  
2000 ◽  
Vol 28 (2) ◽  
pp. 222-226 ◽  
Author(s):  
Kamalendu Nath ◽  
Joseph W. Sarosy ◽  
Spyros P. Stylianou

2006 ◽  
Vol 89 (3) ◽  
pp. 708-711 ◽  
Author(s):  
Carlos Infante ◽  
Manuel Manchado

Abstract A multiplex-polymerase chain reaction (PCR) system was developed for the authentication of the mackerel Scomber colias in commercial canned products. This novel method consists of an S. colias-specific fragment [159 base pairs (bp)] located in the nontranscribed spacer (NTS) sequence, and a Scomber genus-specific PCR product in the 5S rRNA gene (196201 bp) as a positive amplification control. The system was assayed using 18 different canned products labeled as S. colias. A positive identification was made in all but one sample, revealing this methodology as a potential molecular tool for direct application in the authentication of S. colias canned products.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Jenny G. Maloney ◽  
Aleksey Molokin ◽  
Monica Santin

Abstract Background Blastocystis sp. is one of the most common enteric parasites of humans and animals worldwide. It is well recognized that this ubiquitous protist displays a remarkable degree of genetic diversity in the SSU rRNA gene, which is currently the main gene used for defining Blastocystis subtypes. Yet, full-length reference sequences of this gene are available for only 16 subtypes of Blastocystis in part because of the technical difficulties associated with obtaining these sequences from complex samples. Methods We have developed a method using Oxford Nanopore MinION long-read sequencing and universal eukaryotic primers to produce full-length (> 1800 bp) SSU rRNA gene sequences for Blastocystis. Seven Blastocystis specimens representing five subtypes (ST1, ST4, ST10, ST11, and ST14) obtained both from cultures and feces were used for validation. Results We demonstrate that this method can be used to produce highly accurate full-length sequences from both cultured and fecal DNA isolates. Full-length sequences were successfully obtained from all five subtypes including ST11 for which no full-length reference sequence currently exists and for an isolate that contained mixed ST10/ST14. Conclusions The suitability of the use of MinION long-read sequencing technology to successfully generate full-length Blastocystis SSU rRNA gene sequences was demonstrated. The ability to produce full-length SSU rRNA gene sequences is key in understanding the role of genetic diversity in important aspects of Blastocystis biology such as transmission, host specificity, and pathogenicity.


2005 ◽  
Vol 55 (5) ◽  
pp. 1979-1983 ◽  
Author(s):  
Michael Goodfellow ◽  
Luis A. Maldonado ◽  
Erika T. Quintana

A polyphasic study was undertaken to clarify the taxonomic position of Nonomuraea flexuosa DSM 41386T. The distinct 16S rRNA gene sequence phyletic branch formed by this strain was equated with nine related monophyletic clades composed of representatives of the genera classified in the family Streptosporangiaceae. The organism produced a PCR product characteristic of this taxon when examined using a set of oligonucleotide primers specific for members of the family Streptosporangiaceae. Strain DSM 41386T could also be distinguished from representatives of the nine genera assigned to this family using a combination of chemotaxonomic, morphological and physiological properties. It is evident from the genotypic and phenotypic data that strain DSM 41386T is misclassified in the genus Nonomuraea and merits recognition as a monospecific genus within the family Streptosporangiaceae. It is proposed that the name Thermopolyspora flexuosa gen. nov., comb. nov., nom. rev. be used for this purpose, with the type strain DSM 41386T (=NRRL B-24348T).


2006 ◽  
Vol 72 (5) ◽  
pp. 3103-3110 ◽  
Author(s):  
L. Perin ◽  
L. Mart�nez-Aguilar ◽  
R. Castro-Gonz�lez ◽  
P. Estrada-de los Santos ◽  
T. Cabellos-Avelar ◽  
...  

ABSTRACT Until recently, diazotrophy was known in only one of the 30 formally described species of Burkholderia. Novel N2-fixing plant-associated Burkholderia species such as B. unamae, B. tropica, and B. xenovorans have been described, but their environmental distribution is scarcely known. In the present study, the occurrence of N2-fixing Burkholderia species associated with different varieties of sugarcane and maize growing in regions of Mexico and Brazil was analyzed. Only 111 out of more than 900 isolates recovered had N2-fixing ability as demonstrated by the acetylene reduction assay. All 111 isolates also yielded a PCR product with primers targeting the nifH gene, which encodes a key enzyme in the process of nitrogen fixation. These 111 isolates were confirmed as belonging to the genus Burkholderia by using a new 16S rRNA-specific primer pair for diazotrophic species (except B. vietnamiensis) and closely related nondiazotrophic Burkholderia. In Mexico, many isolates of B. unamae (predominantly associated with sugarcane) and B. tropica (more often associated with maize) were recovered. However, in Brazil B. tropica was not identified among the isolates analyzed, and only a few B. unamae isolates were recovered from one sugarcane variety. Most Brazilian diazotrophic Burkholderia isolates (associated with both sugarcane and maize plants) belonged to a novel species, as revealed by amplified 16S rRNA gene restriction profiles, 16S rRNA gene sequencing, and protein electrophoresis. In addition, transmissibility factors such as the cblA and esmR genes, identified among clinical and environmental isolates of opportunistic pathogens of B. cenocepacia and other species of the B. cepacia complex, were not detected in any of the plant-associated diazotrophic Burkholderia isolates analyzed.


2002 ◽  
Vol 46 (12) ◽  
pp. 3765-3769 ◽  
Author(s):  
Carla Fontana ◽  
Marco Favaro ◽  
Silvia Minelli ◽  
Anna Angela Criscuolo ◽  
Antonio Pietroiusti ◽  
...  

ABSTRACT Resistance of Helicobacter pylori to clarithromycin occurs with a prevalence ranging from 0 to 15%. This has an important clinical impact on dual and triple therapies, in which clarithromycin seems to be the better choice to achieve H. pylori eradication. In order to evaluate the possibility of new mechanisms of clarithromycin resistance, a PCR assay that amplified a portion of 23S rRNA from H. pylori isolates was used. Gastric tissue biopsy specimens from 230 consecutive patients were cultured for H. pylori isolation. Eighty-six gastric biopsy specimens yielded H. pylori-positive results, and among these 12 isolates were clarithromycin resistant. The latter were studied to detect mutations in the 23S rRNA gene. Sequence analysis of the 1,143-bp PCR product (portion of the 23S rRNA gene) did not reveal mutation such as that described at position 2142 to 2143. On the contrary, our findings show, for seven isolates, a T-to-C transition at position 2717. This mutation conferred a low level of resistance, equivalent to the MIC for the isolates, selected using the E-test as well as using the agar dilution method: 1 μg/ml. Moreover, T2717C transition is located in a highly conserved region of the 23S RNA associated with functional sites: domain VI. This fact has a strong effect on the secondary structure of the 23S RNA and on its interaction with macrolide. Mutation at position 2717 also generated an HhaI restriction site; therefore, restriction analysis of the PCR product also permits a rapid detection of resistant isolates.


Sign in / Sign up

Export Citation Format

Share Document