scholarly journals Mechanical Properties of High-Performance Concrete with Guinea Corn Husk Ash as Additive

2020 ◽  
Vol 5 (1) ◽  
pp. 131-145
Author(s):  
S.O Odeyemi ◽  
M.A Anifowose ◽  
R. Abdulwahab ◽  
W.O. Oduoye

Consideration on High Performance Concrete (HPC) has risen drastically because of the requirement for application of concrete volume with high strengths for construction work. In this study, the mechanical properties of HPC with Guinea Corn Husk Ash (GCHA) as supplement of cement was investigated. The proportioning of Ordinary Portland Cement (OPC) with GCHA is from 0 - 20%. Design of the concrete mix was done to achieve a characteristic strength of 50 N/mm². The chemical composition of the GCHA was determined using X-ray Fluorescence (XRF)  Slump and compacting factor of fresh HPC were determined. Concrete cubes (for compressive strength), beams (for flexural strength) and cylinder (for split tensile strength) samples were cast and cured in water for 7 - 56 days. Density, compressive, flexural, and split tensile strengths were determined on the hardened HPC and were further examined using SEM analysis. Compressive strength at 56 days showed that control and inclusion of 5% GCHA gave strength 56.85 N/mm2 and 57.76 N/mm2, respectively above the designed target strength of 56.56 N/mm2 while inclusion of 10% GCHA met characteristics strength of 50 N/mm2. However, 5% GCHA-concrete had the highest flexural and split tensile strengths at 56 days of curing. Integration of 10% GCHA as replacement of OPC would produce concrete of higher strengths compared to conventional HPC at longer curing age. Based on the SEM results, uniform distribution of filler was obtained at 10% GCHA inclusion. At higher percentage of GCHA, resulting composite presents multiple and distinct grains with possible weak interfaces.

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1827 ◽  
Author(s):  
Marcin Małek ◽  
Mateusz Jackowski ◽  
Waldemar Łasica ◽  
Marta Kadela

High-performance concrete has low tensile strength and brittle failure. In order to improve these properties of unreinforced concrete, the effects of adding recycled polypropylene fibers on the mechanical properties of concrete were investigated. The polypropylene fibers used were made from recycled plastic packaging for environmental reasons (long degradation time). The compressive, flexural and split tensile strengths after 1, 7, 14 and 28 days were tested. Moreover, the initial and final binding times were determined. This experimental work has included three different contents (0.5, 1.0 and 1.5 wt.% of cement) for two types of recycled polypropylene fibers. The addition of fibers improves the properties of concrete. The highest values of mechanical properties were obtained for concrete with 1.0% of polypropylene fibers for each type of fiber. The obtained effect of an increase in mechanical properties with the addition of recycled fibers compared to unreinforced concrete is unexpected and unparalleled for polypropylene fiber-reinforced concrete (69.7% and 39.4% increase in compressive strength for green polypropylene fiber (PPG) and white polypropylene fiber (PPW) respectively, 276.0% and 162.4% increase in flexural strength for PPG and PPW respectively, and 269.4% and 254.2% increase in split tensile strength for PPG and PPW respectively).


2013 ◽  
Vol 368-370 ◽  
pp. 1052-1055
Author(s):  
Seung Jo Lee ◽  
Jung Min Park

The aim of the study is to improve the understanding of the influence of reinforcing fiber types on the mechanical properties of high performance concretes (HPC) subjected to high temperature. The mechanical properties measured include residual compressive strength, weight reduction ratio, outward appearance property, and failure mode. Nylon, polypropylene, and steel fiber were added to enhance mechanical property of the concretes. After exposure to high temperatures ranged from 100 to 800°C, mechanical properties of fiber-toughened HPC were investigated. For HPC, although residual compressive strength was decreased by exposure to high temperature over 500°C, weight reduction ratio was significantly higher than that before heating temperature.


2013 ◽  
Vol 405-408 ◽  
pp. 2865-2870 ◽  
Author(s):  
Peng Gao ◽  
Hong Fa Yu

4 kinds of mix proportion High performance concrete (HPC) was manufactured, whose material was produced from Inner Mongolia areas. The compressive strength and the flexural strength of HPC were obtained by the Brine Corrosion experiments. And the resistance to corrosion of HPC was analyzed by the data of Brine Corrosion experiment. Furthermore, the concrete standard curing age of HPC samples was adopted as 28d and 90d, which could impact the resistance of high performance concrete in salt brine corrosion environment. It was turned out that 4 kinds of mix proportion HPC produced a good resistance in salt brine corrosion environment. And the longer the concrete standard curing age was adopted, the better resistance in salt brine corrosion environment of HPC could produce.


2013 ◽  
Vol 634-638 ◽  
pp. 2742-2745 ◽  
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Nam Yong Eom ◽  
Do Gyeum Kim ◽  
Jea Myoung Noh

This study undertook the research of size effect on compressive strength and modulus of elasticity, respectively. The parameters of this study are curing age and fly ash replacement ratio to investigate size effect of Type A (100mm x 200mm) and Type B (150mm x 300mm) specimens in high performance concrete. On this study, high performance concrete was fabricated with different FA contents of 10%, 20% and 30%. The measurements were performed on days 28 and 91.


Author(s):  
Faiq M. Al-Zwainy ◽  
Hussam k. Risan ◽  
Rana I. K. Zaki

The purpose of this study was to conduct a meta-analysis that shows the influence of fiber on ultimate compressive strength and tensile strength of ultra-high performance concrete. The internet scholarly search engines and ScienceDirect article references were used to illustrate the papers concerning the experimental investigations of mechanical properties of ultra-high strength concrete with and without fiber with clearly, completely and comparative raw data. The normal concrete test results were dismissed from this search. Seven trials were identified based on the adopted inclusion and exclusion criteria above. The meta-analysis based on standardized mean difference was carried out on the basis of a fixed-effects model for the major outcomes of the ultimate compressive and tensile properties of ultra-high performance concrete. A total of 888 test specimens were enrolled in these seven trials. The combined analysis yielded a sign of a significant improvement in ultimate compressive strength and tensile strength of ultra-high strength concrete with fiber addition of 2% by concrete volume. The summary effect size of ultimate compressive strength was 2.34 while a more improvement in term of tensile strength with effect size of 2.64. By addition fiber of 2% provides a significant benefit in mechanical properties of ultra-high performance concrete.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 770 ◽  
Author(s):  
How-Ji Chen ◽  
Yi-Lin Yu ◽  
Chao-Wei Tang

Compared with ordinary concrete, ultra-high performance concrete (UHPC) has excellent toughness and better impact resistance. Under high temperatures, the microstructure and mechanical properties of UHPC may seriously deteriorate. As such, we first explored the properties of UHPC with a designed 28-day compressive strength of 120 MPa or higher in the fresh mix phase, and measured its hardened mechanical properties at seven days. The test variables included: the type of cementing material and the mixing ratio (silica ash, ultra-fine silicon powder), the type of fiber (steel fiber, polypropylene fiber), and the fiber content (volume percentage). In addition to the UHPC of the experimental group, pure concrete was used as the control group in the experiment; no fiber or supplementary cementitious materials (silica ash, ultra-fine silicon powder) were added to enable comparison and discussion and analysis. Then, the UHPC-1 specimens of the experimental group were selected for further compressive, flexural, and splitting strength tests and SEM observations after exposure to different target temperatures in an electric furnace. The test results show that at room temperature, the 56-day compressive strength of the UHPC-1 mix was 155.8 MPa, which is higher than the >150 MPa general compressive strength requirement for ultra-high-performance concrete. The residual compressive strength, flexural strength, and splitting strength of the UHPC-1 specimen after exposure to 300, 400, and 500 °C did not decrease significantly, and even increased due to the drying effect of heating. However, when the temperature was 600 °C, spalling occurred, so the residual mechanical strength rapidly declined. SEM observations confirmed that polypropylene fibers melted at high temperatures, thereby forming other channels that helped to reduce the internal vapor pressure of the UHPC and maintain a certain residual strength.


Buildings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 11 ◽  
Author(s):  
Piotr Smarzewski

Waste foundry sand (WFS) is a ferrous and non-ferrous foundry industry by-product, produced in the amount of approximately 700 thousand tons annually in Poland and it is estimated that only a small percentage of this waste is recycled. The study used WFS to produce ultra-high performance concrete (UHPC) as a partial substitute for quartz sand. It was replaced with WFS levels of 0%, 5%, 10%, and 15% by weight of quartz sand content. The UHPC mixtures were produced and tested to determine the compressive strength, flexural strength, splitting tensile strength as well as the modulus of elasticity at 28, 56, and 112 days. Scanning electron microscope (SEM) analysis was done to identify the presence of various compounds and micro-cracks in UHPC with WFS. The results revealed an increase as well as an insignificant decrease in the mechanical properties up to 5% and 10% WFS replacement, respectively. These studies also prove improvement in the microstructure of UHPC up to a 5% WFS level. In all the tested properties in this work, 5% WFS was found to be an apt substitute for quartz sand.


Author(s):  
Mebarek Belaoura ◽  
Dalila Chiheb ◽  
Mohamed Nadjib Oudjit ◽  
Abderrahim Bali

This study aims at a better understanding of the behaviour of very high performance concretes (VHPC) subjected to high temperatures. The temperature increase within the concrete originating from the hydratation exothermic reaction of cement is emphasized by the mass effect of the structures and can lead to thermal variations of around 50°C between the heart and the structures walls. These thermal considerations are not without consequence on durability and the physical and mechanical properties of very high performance concrete, such as the compressive strength. This work is an experimental research that shows the effects of temperature on the mechanical properties of very high performance concrete (VHPC) and compares them with those of conventional concrete and HPC. Test specimens in usual concrete, HPC and VHPC are made, preserved till maturity of the concrete, and then subjected to a heating-cooling cycle from room temperature to 500°C at heating rate 0.1°C/min. Mechanical tests on the hot concrete and cooling (air and water) were realized. The results show that the mechanical characteristics of VHPC (density, compressive strength, tensile strength and elastic modulus) decrease with increasing temperature, but their strength remains higher than that of conventional concrete.


2013 ◽  
Vol 372 ◽  
pp. 231-234
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Nam Yong Eom ◽  
Sun Woong Kim ◽  
Do Gyeum Kim ◽  
...  

In this study, some experimental investigations on the development of mechanical properties with age of high performance concrete (HPC) incorporated with blast furnace slag with fly ash or silica fume have been reported. Four different blended HPC were prepared in 0.40 water-binder ratio. At every four mixtures, the compressive strength, splitting tensile strength and modulus of elasticity at 7 and 28 days have been observed for HPC developments. Consequently, only replacement of silica fume significantly increases the mechanical properties in terms of compressive strength, splitting tensile strength and modulus of elasticity.


2014 ◽  
Vol 584-586 ◽  
pp. 1509-1513
Author(s):  
Nan Zhang ◽  
Juan Liao ◽  
Tao Zhang ◽  
Wen Zhan Ji ◽  
Bao Hua Wang ◽  
...  

The effect of very low temperature on high performance concrete (HPC) mechanical properties is studied by using a reasonable testing method. The results show that the compressive strengths of concrete are increasing with lower temperatures. Fly ash (FA), compared to ground granulated blast-furnace slag (GGBFS), is positive to the compressive strength increasing at low temperature. The splitting tensile strengths of concrete appear a maximum at-40°C~-80°C. The compound replacement by GGBFS and FA makes the splitting tensile strength present the extreme value at higher temperature. At very low temperature, the single or compound replacement by mineral admixtures can result in the difference of the relationship between compressive strength and splitting tensile strength, and the degradation of concrete subjected to cold-thermal shocks.


Sign in / Sign up

Export Citation Format

Share Document