scholarly journals Ebola virus (Filoviridae: Ebolavirus: Zaire ebolavirus): fatal adaptation mutations

2021 ◽  
Vol 66 (1) ◽  
pp. 7-16
Author(s):  
I. V. Dolzhikova ◽  
D. N. Shcherbinin ◽  
D. Yu. Logunov ◽  
A. L. Gintsburg
Keyword(s):  
2017 ◽  
Vol 91 (15) ◽  
Author(s):  
John B. Ruedas ◽  
Jason T. Ladner ◽  
Chelsea R. Ettinger ◽  
Suryaram Gummuluru ◽  
Gustavo Palacios ◽  
...  

ABSTRACT Ebolaviruses have a surface glycoprotein (GP1,2) that is required for virus attachment and entry into cells. Mutations affecting GP1,2 functions can alter virus growth properties. We generated a recombinant vesicular stomatitis virus encoding Ebola virus Makona variant GP1,2 (rVSV-MAK-GP) and observed emergence of a T544I mutation in the Makona GP1,2 gene during tissue culture passage in certain cell lines. The T544I mutation emerged within two passages when VSV-MAK-GP was grown on Vero E6, Vero, and BS-C-1 cells but not when it was passaged on Huh7 and HepG2 cells. The mutation led to a marked increase in virus growth kinetics and conferred a robust growth advantage over wild-type rVSV-MAK-GP on Vero E6 cells. Analysis of complete viral genomes collected from patients in western Africa indicated that this mutation was not found in Ebola virus clinical samples. However, we observed the emergence of T544I during serial passage of various Ebola Makona isolates on Vero E6 cells. Three independent isolates showed emergence of T544I from undetectable levels in nonpassaged virus or virus passaged once to frequencies of greater than 60% within a single passage, consistent with it being a tissue culture adaptation. Intriguingly, T544I is not found in any Sudan, Bundibugyo, or Tai Forest ebolavirus sequences. Furthermore, T544I did not emerge when we serially passaged recombinant VSV encoding GP1,2 from these ebolaviruses. This report provides experimental evidence that the spontaneous mutation T544I is a tissue culture adaptation in certain cell lines and that it may be unique for the species Zaire ebolavirus. IMPORTANCE The Ebola virus (Zaire) species is the most lethal species of all ebolaviruses in terms of mortality rate and number of deaths. Understanding how the Ebola virus surface glycoprotein functions to facilitate entry in cells is an area of intense research. Recently, three groups independently identified a polymorphism in the Ebola glycoprotein (I544) that enhanced virus entry, but they did not agree in their conclusions regarding its impact on pathogenesis. Our findings here address the origins of this polymorphism and provide experimental evidence showing that it is the result of a spontaneous mutation (T544I) specific to tissue culture conditions, suggesting that it has no role in pathogenesis. We further show that this mutation may be unique to the species Zaire ebolavirus, as it does not occur in Sudan, Bundibugyo, and Tai Forest ebolaviruses. Understanding the mechanism behind this mutation can provide insight into functional differences that exist in culture conditions and among ebolavirus glycoproteins.


2021 ◽  
Vol 17 (6) ◽  
pp. e1009616
Author(s):  
Linliang Zhang ◽  
Shixiong Zhou ◽  
Majuan Chen ◽  
Jie Yan ◽  
Yi Yang ◽  
...  

The final stage of Ebola virus (EBOV) replication is budding from host cells, where the matrix protein VP40 is essential for driving this process. Many post-translational modifications such as ubiquitination are involved in VP40 egress, but acetylation has not been studied yet. Here, we characterize NEDD4 is acetylated at a conserved Lys667 mediated by the acetyltransferase P300 which drives VP40 egress process. Importantly, P300-mediated NEDD4 acetylation promotes NEDD4-VP40 interaction which enhances NEDD4 E3 ligase activity and is essential for the activation of VP40 ubiquitination and subsequent egress. Finally, we find that Zaire ebolavirus production is dramatically reduced in P300 knockout cell lines, suggesting that P300-mediated NEDD4 acetylation may have a physiological effect on Ebola virus life cycle. Thus, our study identifies an acetylation-dependent regulatory mechanism that governs VP40 ubiquitination and provides insights into how acetylation controls EBOV VP40 egress.


2008 ◽  
Vol 82 (11) ◽  
pp. 5664-5668 ◽  
Author(s):  
Thomas W. Geisbert ◽  
Kathleen M. Daddario-DiCaprio ◽  
Kinola J. N. Williams ◽  
Joan B. Geisbert ◽  
Anders Leung ◽  
...  

ABSTRACT Recombinant vesicular stomatitis virus (VSV) vectors expressing homologous filoviral glycoproteins can completely protect rhesus monkeys against Marburg virus when administered after exposure and can partially protect macaques after challenge with Zaire ebolavirus. Here, we administered a VSV vector expressing the Sudan ebolavirus (SEBOV) glycoprotein to four rhesus macaques shortly after exposure to SEBOV. All four animals survived SEBOV challenge, while a control animal that received a nonspecific vector developed fulminant SEBOV hemorrhagic fever and succumbed. This is the first demonstration of complete postexposure protection against an Ebola virus in nonhuman primates and provides further evidence that postexposure vaccination may have utility in treating exposures to filoviruses.


Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 190
Author(s):  
Jayanthi Wolf ◽  
Risat Jannat ◽  
Sheri Dubey ◽  
Sean Troth ◽  
Matthew T. Onorato ◽  
...  

Preventative vaccines are considered one of the most cost-effective and efficient means to contain outbreaks and prevent pandemics. However, the requirements to gain licensure and manufacture a vaccine for human use are complex, costly, and time-consuming. The 2013–2016 Ebola virus disease (EVD) outbreak was the largest EVD outbreak to date and the third Public Health Emergency of International Concern in history, so to prevent a pandemic, numerous partners from the public and private sectors combined efforts and resources to develop an investigational Zaire ebolavirus (EBOV) vaccine candidate (rVSVΔG-ZEBOV-GP) as quickly as possible. The rVSVΔG-ZEBOV-GP vaccine was approved as ERVEBOTM by the European Medicines Authority (EMA) and the United States Food and Drug Administration (FDA) in December 2019 after five years of development. This review describes the development program of this EBOV vaccine, summarizes what is known about safety, immunogenicity, and efficacy, describes ongoing work in the program, and highlights learnings applicable to the development of pandemic vaccines.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1347
Author(s):  
Illich M. Mombo ◽  
Matthieu Fritz ◽  
Pierre Becquart ◽  
Florian Liegeois ◽  
Eric Elguero ◽  
...  

Based on a large study conducted on wild great ape fecal samples collected in regions of Gabon where previous human outbreaks of Ebola virus disease have occurred between 1994 and 2002, we provide evidence for prevalence of Zaire ebolavirus (EBOV)-specific antibodies of 3.9% (immunoglobulin G (IgG)) and 3.5% (immunoglobulin M (IgM)) in chimpanzees and 8.8% (IgG) and 2.4% (IgM) in gorillas. Importantly, we observed a high local prevalence (31.2%) of anti-EBOV IgG antibodies in gorilla samples. This high local rate of positivity among wild great apes raises the question of a spatially and temporally localized increase in EBOV exposure risk and the role that can be played by these animals as sentinels of the virus’s spread or reemergence in a given area.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Genevieve F. Oliver ◽  
Ayla V. Orang ◽  
Binoy Appukuttan ◽  
Shashikanth Marri ◽  
Michael Z. Michael ◽  
...  

Abstract Objective Survivors of Ebola virus disease (EVD) are at risk of developing blinding intraocular inflammation—or uveitis—which is associated with retinal pigment epithelial (RPE) scarring and persistence of live Zaire ebolavirus (EBOV) within the eye. As part of a large research project aimed at defining the human RPE cell response to being infected with EBOV, this work focused on the microRNAs (miRNAs) associated with the infection. Results Using RNA-sequencing, we detected 13 highly induced and 2 highly repressed human miRNAs in human ARPE-19 RPE cells infected with EBOV, including hsa-miR-1307-5p, hsa-miR-29b-3p and hsa-miR-33a-5p (up-regulated), and hsa-miR-3074-3p and hsa-miR-27b-5p (down-regulated). EBOV-miR-1-5p was also found in infected RPE cells. Through computational identification of putative miRNA targets, we predicted a broad range of regulatory activities, including effects on innate and adaptive immune responses, cellular metabolism, cell cycle progression, apoptosis and autophagy. The most highly-connected molecule in the miR-target network was leucine-rich repeat kinase 2, which is involved in neuroinflammation and lysosomal processing. Our findings should stimulate new studies on the impact of miRNA changes in EBOV-infected RPE cells to further understanding of intraocular viral persistence and the pathogenesis of uveitis in EVD survivors.


2006 ◽  
Vol 80 (6) ◽  
pp. 2738-2746 ◽  
Author(s):  
Danher Wang ◽  
Nicholas U. Raja ◽  
Charles M. Trubey ◽  
Laure Y. Juompan ◽  
Min Luo ◽  
...  

ABSTRACT Ebola virus (EBOV) causes a severe hemorrhagic fever for which there are currently no vaccines or effective treatments. While lethal human outbreaks have so far been restricted to sub-Saharan Africa, the potential exploitation of EBOV as a biological weapon cannot be ignored. Two species of EBOV, Sudan ebolavirus (SEBOV) and Zaire ebolavirus (ZEBOV), have been responsible for all of the deadly human outbreaks resulting from this virus. Therefore, it is important to develop a vaccine that can prevent infection by both lethal species. Here, we describe the bivalent cAdVaxE(GPs/z) vaccine, which includes the SEBOV glycoprotein (GP) and ZEBOV GP genes together in a single complex adenovirus-based vaccine (cAdVax) vector. Vaccination of mice with the bivalent cAdVaxE(GPs/z) vaccine led to efficient induction of EBOV-specific antibody and cell-mediated immune responses to both species of EBOV. In addition, the cAdVax technology demonstrated induction of a 100% protective immune response in mice, as all vaccinated C57BL/6 and BALB/c mice survived challenge with a lethal dose of ZEBOV (30,000 times the 50% lethal dose). This study demonstrates the potential efficacy of a bivalent EBOV vaccine based on a cAdVax vaccine vector design.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1040
Author(s):  
Ade Hanna Natalia ◽  
Usman Sumo Friend Tambunan

Backgroud: Ebola virus disease (EVD) has spread to various countries in the world and has caused many deaths. Five different virus species can cause EVD, but the most virulent is Zaire ebolavirus (EBOV). The genome of EBOV includes seven genes that encode proteins playing essential roles in the virus lifecycle. Among these proteins, VP24 plays a vital role in the inhibition of the host cells’ immune system. Therefore, VP24 is a potential target for EVD therapy. In the present study, a potential inhibitor of EBOV VP24 activity was identified through pharmacophore-based drug design. Methods: This research was a in silico study, using pharmacophore based molecular docking simulation to obtain inhibitor candidates. Result: Terpenoids were used as VP24 inhibitor candidates. In particular, 55,979 terpenoids were obtained from the PubChem database. An initial screening based on the toxicity prediction test was performed with DataWarrior software: 3,353 ligands were shown to have a favorable toxicity profile, but only 1,375 among them had suitable pharmacophore features. These ligands were used for pharmacophore-based rigid and flexible molecular docking simulations with PDB ID: 4M0Q, chosen as the crystal structure of EBOV VP24. Six ligands predicted to have strong molecular interactions with EBOV VP24 underwent pharmacological property analysis through various software packages, including DataWarrior, SwissADME, admetSAR, pkCSM, and Toxtree. Conclusions: Taxumairol V was identified as the best candidate for EVD drug therapy via EBOV VP24 inhibition based on its molecular properties, predicted molecular interactions with the target molecule, and predicted pharmacological properties.


2007 ◽  
Vol 81 (24) ◽  
pp. 13469-13477 ◽  
Author(s):  
St. Patrick Reid ◽  
Charalampos Valmas ◽  
Osvaldo Martinez ◽  
Freddy Mauricio Sanchez ◽  
Christopher F. Basler

ABSTRACT The Zaire ebolavirus protein VP24 was previously demonstrated to inhibit alpha/beta interferon (IFN-α/β)- and IFN-γ-induced nuclear accumulation of tyrosine-phosphorylated STAT1 (PY-STAT1) and to inhibit IFN-α/β- and IFN-γ-induced gene expression. These properties correlated with the ability of VP24 to interact with the nuclear localization signal receptor for PY-STAT1, karyopherin α1. Here, VP24 is demonstrated to interact not only with overexpressed but also with endogenous karyopherin α1. Mutational analysis demonstrated that VP24 binds within the PY-STAT1 binding region located in the C terminus of karyopherin α1. In addition, VP24 was found to inhibit PY-STAT1 binding to both overexpressed and endogenous karyopherin α1. We assessed the binding of both PY-STAT1 and the VP24 proteins from Zaire, mouse-adapted Zaire, and Reston Ebola viruses for interaction with all six members of the human karyopherin α family. We found, in contrast to previous studies, that PY-STAT1 can interact not only with karyopherin α1 but also with karyopherins α5 and α6, which together comprise the NPI-1 subfamily of karyopherin αs. Similarly, all three VP24s bound and inhibited PY-STAT1 interaction with karyopherins α1, α5, and α6. Consistent with their ability to inhibit the karyopherin-PY-STAT1 interaction, Zaire, mouse-adapted Zaire, and Reston Ebola virus VP24s displayed similar capacities to inhibit IFN-β-induced gene expression in human and mouse cells. These findings suggest that VP24 inhibits interaction of PY-STAT1 with karyopherins α1, α5, or α6 by binding within the PY-STAT1 binding region of the karyopherins and that this function is conserved among the VP24 proteins of different Ebola virus species.


Author(s):  
J.J. Muyembe-Tamfum ◽  
S. Mulangu ◽  
Justin Masumu ◽  
J.M. Kayembe ◽  
A. Kemp ◽  
...  

Ebola haemorrhagic fever (EHF) is a zoonosis affecting both human and non-human primates (NHP). Outbreaks in Africa occur mainly in the Congo and Nile basins. The first outbreaks of EHF occurred nearly simultaneously in 1976 in the Democratic Republic of the Congo (DRC, former Zaire) and Sudan with very high case fatality rates of 88% and 53%, respectively. The two outbreaks were caused by two distinct species of Ebola virus named Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV). The source of transmission remains unknown. After a long period of silence (1980–1993), EHF outbreaks in Africa caused by the two species erupted with increased frequency and new species were discovered, namely Côte d’Ivoire ebolavirus (CIEBOV) in 1994 in the Ivory Coast and Bundibugyo ebolavirus (BEBOV) in 2007 in Uganda. The re-emergence of EHF outbreaks in Gabon and Republic of the Congo were concomitant with an increase in mortality amongst gorillas and chimpanzees infected with ZEBOV. The human outbreaks were related to multiple, unrelated index cases who had contact with dead gorillas or chimpanzees. However, in areas where NHP were rare or absent, as in Kikwit (DRC) in 1995, Mweka (DRC) in 2007, Gulu (Uganda) in 2000 and Yambio (Sudan) in 2004, the hunting and eating of fruit bats may have resulted in the primary transmission of Ebola virus to humans. Human-to-human transmission is associated with direct contact with body fluids or tissues from an infected subject or contaminated objects. Despite several, often heroic field studies, the epidemiology and ecology of Ebola virus, including identification of its natural reservoir hosts, remains a formidable challenge for public health and scientific communities.


Sign in / Sign up

Export Citation Format

Share Document