scholarly journals Physicochemical Characteristics of the Okomu Wetland, Edo State, Nigeria

Author(s):  
A.E. Ogbeibu ◽  
S.I Ehiorobo

Water quality assessment was carried out within the 202 km2 Okomu National Park located within the 1,082km2Okomu Forest Reserve between January 2017 and December 2018. Water sampling was carried in ten compartments of approximately 1.6km2 each, covering Ponds, Stream and River, based on easy accessibility. No such study has been carried out for the Okomu Wetlands in the past three decades. Sampling protocols, laboratory analysis and quality control/quality assurance measures followed standard procedures. All physicochemical parameters showed significant (P < 0.001) spatial variations. The maximum and minimum values obtained for physicochemical parameters of the Okomu Wetland are 23.6 and 38.0°C air temperature; 21.0 – 38°C water temperature; 0.15 – 1.02m water level; 16.7 – 150.7mg/l total dissolved Solids (TDS); 0.5 – 18.8mg/l total suspended Solids (TSS); 0.2 – 14.8mg/l turbidity; 40. 0 – 307.4µS/cm electrical conductivity (EC); 4.4 – 6.7 pH; 0.02 – 0.14mg/l salinity; 0.7 – 5.5mg/l dissolve oxygen (DO); 0.5 – 3.8mg/l biochemical oxygen demand (BOD); 1.5 – 120.2mg/l chemical oxygen demand (COD); 23.8 – 593.6mg/l bicarbonates (HCO3); 69.9 – 245.3mg/l Chlorine (Cl); 0.02 – 0.59mg/l nitrite (NO2); 0.11 – 2.34mg/l nitrate (NO3); 0.04 – 2.11mg/l ammonium-nitrogen (NH4N); 0.05 – 2.96mg/l sulphate (SO4); 0.09 – 9.2mg/l phosphorus (P); 0.20 – 2.72mg/l sodium (Na), 0.03 – 1.32mg/l potassium (K); 0.88 – 5.88mg/l calcium (Ca); 0.13 – 3.1mg/l magnesium (Mg); 5.8 – 18.9mg/l iron (Fe); 0.04 – 1.1mg/l manganese (Mn); 0.02 – 0.09mg/l copper (Cu); 0.93 – 6.0mg/l zinc (Zn); 0.01 – 2.9mg/l lead (Pb); 0.01 – 0.18mg/l cadmium (Cd); 0.06 – 4.0mg/l chromium (Cr); 0.01 – 0.15mg/l nickel (Ni); 0.01 – 11mg/l vanadium (V). Air and water temperatures were mostly influenced by forest canopy cover. pH levels indicate that the water bodies within the forested wetland are slightly acidic. Higher DO values were recorded in the Arhakhuan Stream and Okomu River (Agekpukpu and Iron bridge) than in the temporary ponds. BOD levels of greater than 1mg/l were observed which is indicative of slight levels of organic pollution. Higher concentrations of TDS, TSS, turbidity, EC, Colour, HCO3, NH4N, NO2, NO3, P, Na, K, Ca Mg and heavy metals were recorded in the temporary ponds than in the Stream and River. Research on water bodies within wetlands should be carried out routinely in order to monitor changes in the water conditions that could occur overtime whether natural or anthropogenic. This becomes even more pertinent in the light of glaring impacts of climate change and increasing environmental modifications.

2011 ◽  
Vol 63 (3) ◽  
pp. 819-824 ◽  
Author(s):  
Dragana Milijasevic ◽  
Ana Milanovic ◽  
Jovana Brankov ◽  
M. Radovanovic

The Borska Reka river (47 km long, 373 km2 of basin area) is located in eastern Serbia and it is the biggest tributary of the river Veliki Timok. It is also one of the most polluted watercourses in Serbia. Using the data of the Republic Hydrometeorological Service of Serbia, the paper analyzes water pollution using the combined physical-chemical WPI index (water pollution index) over two periods: 1993-1996 and 2006-2009. The analysis of parameters showed significantly increased values of heavy metals (especially iron and manganese) which are indicators of inorganic pollution (primarily because of mining), but also increased values of organic pollution indicators (Biological Oxygen Demand-BOD5, ammonium, coliform germs), as the result of uncontrolled domestic wastewater discharge.


2019 ◽  
Vol 10 (2) ◽  
pp. 17
Author(s):  
Okezie Onyemaechi ◽  
Nwachukwu Ejikeme

Water samples from twenty water sources (fifteen boreholes and five streams) in Uzuakoli, Nigeria were collected for the period of 6 months covering the dry and rainy seasons to assess the level of contamination. The Microbiological characteristics including heterotrophic counts, coliform counts and physicochemical parameters includes pH, turbidity, dissolved oxygen, calcium, potassium, nitrate, magnesium and phosphate were evaluated using standard methods. The total Heterotrophic counts for the borehole during the dry and rainy season were 8.3 x 103 cfu/ ml and 10.8 x 104 cfu/ ml. The Heterotrophic counts for the stream were 12.7 x 104 cfu/ ml and 17.8x 106 cfu/ ml. The frequency of occurrence of the isolates are Staphylococcus aureus 63% in borehole and 85% in streams, Pseudomonas aeruginosa 49% in boreholes and 95% in streams, Proteus sp 52% in boreholes and 97% in streams, Streptococcus sp 46% in boreholes and 53% in streams, Enterobacter aerogenes 33% in boreholes and 63% in streams, Escherichia coli 16% in boreholes and 53% in streams and Salmonella sp no percentage in boreholes and 40% in streams. The result shows a significant difference at (P≤0.05) for the bacterial isolates. The physicochemical parameters of the borehole and stream water samples during the dry and rainy seasons were determined. The temperature ranged from 25oC 32oC; pH ranged from 5.3 8.1; turbidity ranged 0.03 3.23; dissolved oxygen ranged from 3.45–7.40mg/l; biochemical oxygen demand ranged from 1.20–4.32mg/l; chemical oxygen demand ranged from 2.50–5.21mg/l; Calcium ranged from 0.81–5.64mg/l; potassium ranged from 1.01–4.22mg/l; Nitrate ranged from 1.49–4.02mg/l; magnesium ranged from 0.13–2.20mg/l; phosphate ranged from 0.51–2.01mg/l. The water samples were all within the WHO limits apart from sample from Iyi Agbozu that had temperature of 32oC.


2021 ◽  
Vol 4 (4) ◽  
pp. 223-230
Author(s):  
S. O. Owalude ◽  
E. O. Odebunmi ◽  
K. O. Babalola

The impact of the industrial effluents from Odogunyan industrial estate on the environment was assessed by determination of some physicochemical characteristics of the effluent samples and comparison with discharged standards to ascertain the efficiency of industries’ wastewater treatment process. The physicochemical parameters were evaluated by conventional methods while heavy metals in the effluent samples were analyzed using Atomic Absorption Spectrophotometer (AAS). The results for all the effluents revealed that temperature was in the range of 32- 35 ; Biochemical Oxygen Demand (BOD) 43-86.7 mg/L; Chemical Oxygen Demand (COD) 492-888 mg/L; Total Dissolved Solids (TDS) 1667-13333 mg/L; Total Suspended Solids (TSS) 350-1000 mg/L; Total Solids (TS) 3350-14333 mg/L; Electrical Conductivity 166.5-12390 μS/cm; Total Acidity (TA) 12-60 mg/L and total hardness 24-56 mg/L. The AAS analysis results showed the average metal levels in mg/L as 0.7-1.15, 0.05-0.44, 2.0-45.0, 0.01 and 0.03-0.17 for Zn, Cu, Fe, Cd and Cr respectively. Thus, there is a need for proper remedial measures of the effluents before their discharge into the water bodies


1970 ◽  
Vol 23 (10) ◽  
pp. 1835-1839
Author(s):  
Y. Abdullahi ◽  
P. Moses ◽  
V.B. Kwaya

Studies were conducted on the diversity, distribution and physicochemical characteristics of phytoplanktons of Pindiga Pond. Water and phytoplankton samples were collected for three months at ten (10) days interval. The objective of the present research is to determine the phytoplanktons distribution and physicochemical characteristics of the Pond. Standard procedures were adopted for determination of physicochemical parameters viz; Temperature, pH, Transparency, Conductivity, Nitrate, Phosphate, Dissolved oxygen (DO), Biological Oxygen Demand (BOD).These physicochemical characteristics were observed to have varied within the period of the study. Seventeen (17) genus, Thirteen (13) orders, four (4) classes, and four (4) division of phytoplankton were identified, and the class Bacillariophyceae (46 %) was the highest percentage recorded during the study, Chlorophyceae (32 %), Euglenophyceae (19 %) and Cyanophyceae (3%) the least in occurrence and distribution. The study also revealed that pindiga pond had luxuriant phytoplanktons flora, diverse and seasonal with fluctuating pattern of physicochemical characteristics recorded. The physicochemical characteristics were also within productive limit in Pindiga pond.Key words: Phytoplanktons, Diversity, Distribution, Pond


2020 ◽  
Vol 6 (2) ◽  
pp. 23-28
Author(s):  
O. A. F Wokoma ◽  
◽  
O. S Edori ◽  

Wastewater samples were collected from an oil industry at the point of discharge for a period of two years, from January 2018 – December 2019. The wastewater samples were analyzed for different physicochemical parameters such as temperature, turbidity, total dissolved solids (TDS), total suspended solids (TSS), conductivity, pH, alkalinity, salinity, total hydrocarbon content (THC), biochemical oxygen demand (BOD) and chemical oxygen demand (COD) to examine their conformity to fulfill requirements as recommended by World Health Organization (WHO), Federal Ministry of Environment (FME) and Drinking Water Association (DWA). The results indicated that all the parameters in the discharged wastewater were within acceptable limits of the regulatory bodies. The field data showed that the investigated firm conformed to the law by carrying out proper procedures before discharging the effluents into the public drain and river. Therefore, the release of wastewater from the industry doesn't constitute a danger to the environment as well as aquatic organisms. Keywords: Physicochemical parameter, wastewater discharge, oil industry, environment, contaminants


Author(s):  
A. A. Maslennikov ◽  
S. A. Demidova ◽  
A. V. Ryabova

Water containing polyvinyl nitrate was experimentally assessed on the basis of organoleptic, general sanitary and toxicological indicators of harmfulness. It was established that that the compound did not change water organoleptic properties but produced a negative impact on viability of saprophytic microflora , nitrification processes and biochemical oxygen demand. Besides, in tests on animals. the substance caused acute, sub-acute and chronic toxicity. Based on those signs of harmfulness, threshold levels of exposure were established. Data obtained were taken into account for substantiation of MAC (Maximum allowable concentration) of polyvinyl nitrate in water bodies.


1999 ◽  
Vol 39 (10-11) ◽  
pp. 221-224 ◽  
Author(s):  
Jana Zagorc-Končan ◽  
J. Šömen

Microbial purification capacity is an important factor in natural self-regulation in water. Evaluating the fate of biodegradable organic pollution downstream from the discharge seems an appropriate way to follow the effect of pollution and its hazard assessment, which dictates the needed sanitation measures. We suggest a simple test for such monitoring. A modification of the additional oxygen demand test, standardised in Ausgewählte Methoden der Wasseruntersuchung, was applied in two river case studies. The additional oxygen demand is a measure of the capability and rate of biodegradation of known organic substance as well as of the amount and activity of heterotrophic organisms in the river. The original test using peptone and glucose as additional feedings of BOD samples was modified by the use of other organic biodegradable model substances characteristic for individual industrial pollutants. The test was found to be an excellent indicator of adapted microorganisms, which are essential for the biodegradation of the appointed organic substances downstream of their discharge into the receiving stream.


2009 ◽  
Vol 6 (3) ◽  
pp. 898-904
Author(s):  
D. Ilangeswaran ◽  
R. Kumar ◽  
D. Kannan

Various samples of groundwater were collected from different areas of Kandarvakottai and Karambakudi of Pudukkottai District, Tamilnadu and analyzed for their physicochemical characteristics. The results of this analysis were compared with the water quality standards of ISI, WHO and CPHEEO. In this analysis the various physicochemical parameters such as pH, electrical conductivity, turbidity, total dissolved solids, Cl-, F-, SO42-, PO43-, NO3-, NO2-, CN-, Nas+, K+, NH3, Mn, Fe, Ca & Mg hardnessetc., were determined using standard procedures. The quality of groundwater samples were discussed with respect to these parameters and thus an attempt were made to ascertain the quality of groundwater used for drinking and cooking purposes in and around Kandarvakottai and Karambakudi areas.


2020 ◽  
Vol 15 (3) ◽  
pp. 70-77
Author(s):  
J.D Bala ◽  
F. A Kuta ◽  
N.U Adabara ◽  
O.P Abioye ◽  
H.S Auta ◽  
...  

Water used for washing carcasses of slaughtered animals and slaughter house is referred to as abattoir wastewater. This study was designed to investigate the microorganisms associated with abattoir wastewater and to establish the biodegradation potential of abattoir wastewater microbiota. Isolation of the microbes was carried out using pour plate technique. The total viable count for the microbes’ ranges from 2.5×104 - 4.6×105 cfu/mL. Results revealed that all the physicochemical parameters exceeded the permissible limits (total dissolved solid (TDS) 1748mg/L, total suspended solid (TSS) 176mg/L, biochemical oxygen demand (BOD5) 91 mg/L and chemical oxygen demand (COD) 227 mg/L). Microorganisms isolated include Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Bacillus anthracis, Aspergillus niger, A. flavus, Mucor sp, Trichophyton quickeanum and Penicillium sp. Some of the microbes were observed to have biodegradation potential by their ability to grow on mineral salt media (MSM) incorporated with starch, cellulose, crude oil, kerosene and diesel as the sole source of carbon and energy. This study suggests that abattoir wastewater harbors microorganisms that could be hazardous to public health when discharged into the environment untreated hence the need for strict monitoring. These microbes isolated could be employed as agent of bioremediation of wastewaters. Key words: Abattoir; Biodegredation; Isolation; Microbiota; Wastewater


2014 ◽  
Vol 26 (4) ◽  
pp. 367-380 ◽  
Author(s):  
Beatriz Concepción Tracanna ◽  
Silvia Nelly Martínez De Marco ◽  
María de los Ángeles Taboada ◽  
Virginia Mirande ◽  
María de Lourdes Gultemirian ◽  
...  

AIM: The Escaba dam is located in the south of the Tucumán province, Argentina, at 650 m above sea level. It has an extension of 541 ha. and a depth of 65 m and its tributaries are the Chavarría, Las Moras, El Chorro and Singuil rivers. The climate is mild with dry winters and rainy summers. The objective of this study was to characterize physicochemical parameters in the limnetic zone of the dam and the mouths of the tributaries to determine the water quality. METHODS: Seasonal sampling was carried out between August 2010 and May 2012. Temperature, transparency, pH and electrical conductivity were field measured, whereas dissolved oxygen, biochemical oxygen demand (BOD5), major ion constituents and nitrogen and phosphate compounds were analyzed at the laboratory. RESULTS: The water was classified as sodium-calcium-bicarbonate with neutral to alkaline pH, and thermal stratification during spring and summer. The water assayed was well oxygenated except for the bottom of the limnetic zone during the summer months. Lowest transparency was measured in the El Chorro River in November 2011 (0.12 m) and highest degree of transparency in the Singuil River during the winter of 2010 (4.1 m). The waters assayed showed weak mineralization with conductivities between 83 and 218 µS.cm-1. Maximum BOD5 value (183 mg.L-1) was measured in the Singuil River in spring 2010. Highest values for the different nitrogen compounds were as follows: 7 mg NO3-.L-1 at the bottom of the limnetic zone in August 2010, 0.07 mg NO2-.L-1 in the Las Moras River in May 2011 and 1.8 mg NH4+.L-1 in the Chavarría River in March 2011. During the summer of 2012 orthophosphate reached a value of 0.22 mg.L-1 at the bottom of the limnetic zone. The TN/TP ratio revealed that phosphate was generally the limiting factor and rarely nitrogen. CONCLUSIONS: Considering the TN, TP and transparency parameters the ecosystem was classified as hypertrophic. PCA allowed a seasonal differentiation of the sites, and components 1 and 2 classified the samples according to nutrient gradient, dissolved oxygen, BOD5 and temperature.


Sign in / Sign up

Export Citation Format

Share Document