Gene Therapy in the Management of Parkinson’s Disease: Potential of GDNF as a Promising Therapeutic Strategy

2020 ◽  
Vol 20 (3) ◽  
pp. 207-222
Author(s):  
Tapan Behl ◽  
Ishnoor Kaur ◽  
Arun Kumar ◽  
Vineet Mehta ◽  
Gokhan Zengin ◽  
...  

: The limitations of conventional treatment therapies in Parkinson’s disorder, a common neurodegenerative disorder, lead to the development of an alternative gene therapy approach. Multiple treatment options targeting dopaminergic neuronal regeneration, production of enzymes linked with dopamine synthesis, subthalamic nucleus neurons, regulation of astrocytes and microglial cells and potentiating neurotrophic factors, were established. Viral vector-based dopamine delivery, prodrug approaches, fetal ventral mesencephalon tissue transplantation and dopamine synthesizing enzyme encoding gene delivery are significant therapies evidently supported by numerous trials. The review primarily elaborates on the significant role of glial cell-line derived neurotrophic factor in alleviating motor symptoms and the loss of dopaminergic neurons in Parkinson’s disease. Neuroprotective and neuroregenerative effects of GDNF were established via preclinical and clinical study outcomes. The binding of GDNF family ligands with associated receptors leads to the formation of a receptor-ligand complex activating Ret receptor of tyrosine kinase family, which is only expressed in dopaminergic neurons, playing an important role in Parkinson’s disease, via its association with the essential protein encoded genes. Furthermore, the review establishes delivery aspects, like ventricular delivery of recombinant GDNF, intraparenchymal and intraputaminal delivery using infusion catheters. The review highlights problems and challenges of GDNF delivery, and essential measures to overcome them, like gene therapy combinations, optimization of delivery vectors, newer targeting devices, motor symptoms curbing focused ultrasound techniques, modifications in patient selection criteria and development of novel delivery strategies based on liposomes and encapsulated cells, to promote safe and effective delivery of neurotrophic factor and establishment of routine treatment therapy for patients.

Author(s):  
Martin J. Kelly ◽  
Gerard W. O'Keeffe ◽  
Aideen M. Sullivan

Parkinson's disease (PD) is a neurodegenerative disorder characterised by the progressive loss of midbrain dopaminergic neurons, which causes motor impairments. Current treatments involve dopamine replacement to address the disease symptoms rather than its cause. Factors that promote the survival of dopaminergic neurons have been proposed as novel therapies for PD. Several dopaminergic neurotrophic factors (NTFs) have been examined for their ability to protect and/or restore degenerating dopaminergic neurons, both in animal models and in clinical trials. These include glial cell line-derived neurotrophic factor, neurturin, cerebral dopamine neurotrophic factor and growth/differentiation factor 5. Delivery of these NTFs via injection or infusion to the brain raises several practical problems. A new delivery approach for NTFs involves the use of recombinant viral vectors to enable long-term expression of these factors in brain cells. Vectors used include those based on adenoviruses, adeno-associated viruses and lentiviruses. Here we review progress to date on the potential of each of these four NTFs as novel therapeutic strategies for PD, as well as the challenges that have arisen, from pre-clinical analysis to clinical trials. We conclude by discussing recently-developed approaches to optimise the delivery of NTF-carrying viral vectors to the brain.


2019 ◽  
Vol 14 (2) ◽  
pp. 107-121
Author(s):  
Neeraj Kumar ◽  
Anita Singh ◽  
Dinesh Kumar Sharma ◽  
Kamal Kishore

Background: The humans can be affected by more than 100 types of cancers in which about 22 % cancer death are caused by tobacco, 10% due to alcohol and obesity, 5-10 % by genetic defects and 20 % by infections. Rheumatoid arthritis, an autoimmune disorder, occurs mostly in middle age, affects 2.5 times more to females than males and till 2015, more than 24.5 Million people get affected from this disorder. The deaths due to rheumatoid arthritis were 28000 in 1990 and increased to 38000 in 2013. Parkinson’s disease, a neurodegenerative disorder of central nervous system affects about 6.2 million people in 2015 and responsible for approximately 117400 deaths worldwide. Parkinson’s disease occurs mainly over the age of 60 and males get more affected than females. Methods: Bibliographic database has created by mendeley desktop software for available literature in peer reviewed research articles especially by titles and disease names as keywords with AND Boolean operator (title AND year or author AND year). The intervention and findings of quality papers were extracted by detailed study and a conceptual framework has developed. Results: Total 121 research and review articles are cited in this review to produce high impact in literature for pathophysiology and receptors involved in all three diseases. Changes in enzyme action, prohibition of angiogenesis and inhibition of microtubule are the main areas where anticancer molecules may perform significant effect. The immune system is not a good target for rheumatic treatment due to many complications that occur in body but fibroblast, like synoviocytes, proteases which are responsible for cartilage destruction and osteoclast differentiation may be the beneficial targets for pharmacoactive molecules in the treatment of rheumatoid arthritis. In Parkinson’s disease, supply of dopamine to brain from outside results in brain dopamine synthesis decrement which increase drug dependency. The compounds which stimulate secretion, reuptake inhibitor and increment in dopaminergic neurons may be good targets. Conclusion: Alteration of signal transduction by a drug is the goal of chemogenomics, a new branch formed by combination of chemistry and genomics. The proliferation, angiogenesis and apoptosis of cancer cells are regulated by cellular signaling of transcription factors, protein kinases, transmembrane receptors, extracellular ligands and some external factors like oncogenic mutations, ubiquitin-proteasome pathway with epigenetic changes. Traditional anticancer drugs either alter DNA synthesis or control cell division while new drugs retard tumor growth or induce apoptosis. The deterioration of dopaminergic neurons in substantia nigra results in Parkinson’s disease with mental confusion, cognitive dysfunction and sleep disorder. Rheumatoid arthritis is characterized by inflammation, autoimmunity, joint destruction, deformity and premature mortality and treated mainly by anti-inflammatory and antirheumatic drugs. This review provides a comprehensive summary of objects which may act as potential targets for many health disorders.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiao-yi Kuai ◽  
Xiao-han Yao ◽  
Li-juan Xu ◽  
Yu-qing Zhou ◽  
Li-ping Zhang ◽  
...  

AbstractParkinson’s disease (PD) is a neurodegenerative disorder and 70–80% of PD patients suffer from gastrointestinal dysfunction such as constipation. We aimed to assess the efficacy and safety of fecal microbiota transplantation (FMT) for treating PD related to gastrointestinal dysfunction. We conducted a prospective, single- study. Eleven patients with PD received FMT. Fecal samples were collected before and after FMT and subjected to 16S ribosomal DNA (rDNA) gene sequencing. Hoehn-Yahr (H-Y) grade, Unified Parkinson's Disease Rating Scale (UPDRS) score, and the Non-Motion Symptom Questionnaire (NMSS) were used to assess improvements in motor and non-motor symptoms. PAC-QOL score and Wexner constipation score were used to assess the patient's constipation symptoms. All patients were tested by the small intestine breath hydrogen test, performed before and after FMT. Community richness (chao) and microbial structure in before-FMT PD patients were significantly different from the after-FMT. We observed an increased abundance of Blautia and Prevotella in PD patients after FMT, while the abundance of Bacteroidetes decreased dramatically. After FMT, the H-Y grade, UPDRS, and NMSS of PD patients decreased significantly. Through the lactulose H2 breath test, the intestinal bacterial overgrowth (SIBO) in PD patients returned to normal. The PAC-QOL score and Wexner constipation score in after-FMT patients decreased significantly. Our study profiles specific characteristics and microbial dysbiosis in the gut of PD patients. FMT might be a therapeutic potential for reconstructing the gut microbiota of PD patients and improving their motor and non-motor symptoms.


Medicina ◽  
2021 ◽  
Vol 57 (4) ◽  
pp. 314
Author(s):  
Aida Arroyo-Ferrer ◽  
Francisco José Sánchez-Cuesta ◽  
Yeray González-Zamorano ◽  
María Dolores del Castillo ◽  
Carolina Sastre-Barrios ◽  
...  

Background: Parkinson’s disease (PD) is the second most common neurodegenerative disorder. This disease is characterized by motor symptoms, such as bradykinesia, tremor, and rigidity. Although balance impairment is characteristic of advanced stages, it can be present with less intensity since the beginning of the disease. Approximately 60% of PD patients fall once a year and 40% recurrently. On the other hand, cognitive symptoms affect up to 20% of patients with PD in early stages and can even precede the onset of motor symptoms. There are cognitive requirements for balance and can be challenged when attention is diverted or reduced, linking a worse balance and a higher probability of falls with a slower cognitive processing speed and attentional problems. Cognitive rehabilitation of attention and processing speed can lead to an improvement in postural stability in patients with Parkinson’s. Methods: We present a parallel and controlled randomized clinical trial (RCT) to assess the impact on balance of a protocol based on cognitive rehabilitation focused on sustained attention through the NeuronUP platform (Neuronup SI, La Rioja, Spain) in patients with PD. For 4 weeks, patients in the experimental group will receive cognitive therapy three days a week while the control group will not receive any therapy. The protocol has been registered at trials.gov NCT04730466. Conclusions: Cognitive therapy efficacy on balance improvement may open the possibility of new rehabilitation strategies for prevention of falls in PD, reducing morbidity, and saving costs to the health care system.


2020 ◽  
Author(s):  
Eiji Inoue ◽  
Takahiro Suzuki ◽  
Yasuharu Shimizu ◽  
Keiichi Sudo ◽  
Haruhisa Kawasaki ◽  
...  

AbstractParkinson’s disease (PD) is a common neurodegenerative disorder with motor symptoms linked to the loss of dopaminergic neurons in the brain. α-Synuclein is an aggregation-prone neural protein that plays a role in the pathogenesis of PD. In our previous paper, we found that saffron; the stigma of Crocus sativus Linné (Iridaceae), and its constituents (crocin and crocetin) suppressed aggregation of α-synuclein and promoted the dissociation of α-synuclein fibrils in vitro. In this study, we investigated the effect of dietary saffron and its constituent, crocetin, in vivo on a fly PD model overexpressing several mutant α-synuclein in a tissue-specific manner. Saffron and crocetin significantly suppressed the decrease of climbing ability in the Drosophila overexpressing A30P (A30P fly PD model) or G51D (G51D fly PD model) mutated α-synuclein in neurons. Saffron and crocetin extended the life span in the G51D fly PD model. Saffron suppressed the rough-eyed phenotype and the dispersion of the size histogram of the ocular long axis in A30P fly PD model in eye. Saffron had a cytoprotective effect on a human neuronal cell line with α-synuclein fibrils. These data showed that saffron and its constituent crocetin have protective effects on the progression of PD disease in animals in vivo and suggest that saffron and crocetin can be used to treat PD.


The neurodegenerative disorder is a prolonged persistence curse and effect on economic and physical challenges in an aging world. Parkinson has come in the second category of disability disorders and associated with progressive dopaminergic neuronal degeneration with severe motor complications. It is an observation that gradual disease progression causes 70% degeneration of striatal dopaminergic neurons. Globally there are around 7-10 million patients with Parkinson's disease, however, there are huge efforts for therapeutic improvement. According to studies, no single molecular pathway was pointed out as a single etiology to control disease progression due to a lack of targeted therapeutic strategies. Previously implemented symptomatic treatments include L-dopa (L-3,4-dihydroxyphenylalanine), deep brain stimulation, and the surgical insertion of a medical device. This leads to dyskinesia, dystonia and a higher risk of major surgical complications respectively. However, not all the above-mentioned therapies cannot regenerate the dopaminergic neurons in Parkinson’s disease patients. Recent advances in the field of cellular therapy have shown promising outcomes by differentiation of multipotent mesenchymal stem cells into dopaminergic neurons under the influence of a regenerative substance. In this review, we have discussed the differentiation of dopaminergic neurons by using different cell types that can be used as a cellular therapeutic approach for Parkinson’s disease. The information was collected through a comprehensive search using the keywords, “Parkinson Disease, Dopamine, Brain derived neurotrophic factor and neuron from reliable search engines, PubMed, Google Scholar and Medline reviews from the year 2010 to 2020.


2020 ◽  
Author(s):  
Brett Fulleylove-Krause ◽  
Samantha Sison ◽  
Allison Ebert

Abstract Objectives: Parkinson’s disease (PD) is a common neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. Although the underlying mechanisms of dopaminergic neuron loss is not fully understood, evidence suggests mitochondrial malfunction as a key contributor to disease pathogenesis. We previously found that human PD patient stem cell-derived dopaminergic neurons exhibit reduced nicotinamide adenine dinucleotide (NAD+) levels and reduce activity of sirtuins, a group of NAD+-dependent deacetylase enzymes that participate in the regulation of mitochondrial function, energy production, and cell survival. Thus, here we tested whether treatment of PD stem cell-derived dopaminergic neurons with nicotinamide mononucleotide (NMN), an NAD+ precursor, could increase NAD+ levels and improve sirtuin activity. Results: We treated PD iPSC-derived dopaminergic neurons with NMN and found that NAD+ levels did increase. The deacetylase activity of sirtuin (SIRT) 2 was improved with NMN treatment, but NMN had no impact on deacetylase activity of SIRT 1 or 3. These results suggest that NMN can restore NAD+ levels and SIRT 2 activity, but that additional mechanisms are involved SIRT 1 and 3 dysregulation in PD dopaminergic neurons.


2016 ◽  
Vol 10 (1) ◽  
pp. 42-58 ◽  
Author(s):  
Mohsin H.K. Roshan ◽  
Amos Tambo ◽  
Nikolai P. Pace

Parkinson’s disease [PD] is the second most common neurodegenerative disorder after Alzheimer’s disease, affecting 1% of the population over the age of 55. The underlying neuropathology seen in PD is characterised by progressive loss of dopaminergic neurons in the substantia nigra pars compacta with the presence of Lewy bodies. The Lewy bodies are composed of aggregates of α-synuclein. The motor manifestations of PD include a resting tremor, bradykinesia, and muscle rigidity. Currently there is no cure for PD and motor symptoms are treated with a number of drugs including levodopa [L-dopa]. These drugs do not delay progression of the disease and often provide only temporary relief. Their use is often accompanied by severe adverse effects. Emerging evidence from bothin vivoandin vitrostudies suggests that caffeine may reduce parkinsonian motor symptoms by antagonising the adenosine A2Areceptor, which is predominately expressed in the basal ganglia. It is hypothesised that caffeine may increase the excitatory activity in local areas by inhibiting the astrocytic inflammatory processes but evidence remains inconclusive. In addition, the co-administration of caffeine with currently available PD drugs helps to reduce drug tolerance, suggesting that caffeine may be used as an adjuvant in treating PD. In conclusion, caffeine may have a wide range of therapeutic effects which are yet to be explored, and therefore warrants further investigation in randomized clinical trials.


Author(s):  
Vaibhav Walia ◽  
Ashish Gakkhar ◽  
Munish Garg

Parkinson's disease (PD) is a neurodegenerative disorder in which a progressive loss of the dopaminergic neurons occurs. The loss of the neurons is most prominent in the substantia nigra region of the brain. The prevalence of PD is much greater among the older patients suggesting the risk of PD increases with the increase of age. The exact cause of the neurodegeneration in PD is not known. In this chapter, the authors introduce PD, demonstrate its history, pathogenesis, neurobiology, sign and symptoms, diagnosis, and pharmacotherapy.


2019 ◽  
Vol 13 (2) ◽  
pp. 91-94 ◽  
Author(s):  
Elena Barbagelata ◽  
Antonello Nicolini ◽  
Paola Tognetti

Parkinson’s disease (PD) is a chronic neurodegenerative disorder with a typical movement pattern, as well as different, less studied non-motor symptoms such as dysphagia. Disease-related disorders in efficacy or safety in the process of swallowing usually lead to malnutrition, dehydration or pneumonia. Dysphagia and subsequent aspiration pneumonia are common causes of morbidity and mortality in those with PD. The aim of this review is to identify and evaluate the existing literature on swallowing disorders in PD and providing recommendations for clinical practice routine.


Sign in / Sign up

Export Citation Format

Share Document