scholarly journals SLURRY EROSION BEHAVIORS OF COPPER ALLOY BARREL OF MEASURE-MENT WHILE DRILLING

2021 ◽  
Vol 27 (1) ◽  
pp. 36-42
Author(s):  
Kang Jin Huang ◽  
Kun Xia Wei ◽  
Ke Zhang ◽  
Wei Wei ◽  
Qing Bo Du ◽  
...  

Measurement while drilling (MWD) has been widely used in petroleum drilling engineering because it can realize borehole trajectory monitoring and improve the drilling speed. However, the slurry erosion will deteriorate and shorten the life of MWD. A user-defined function (UDF) code was developed to calculate the particle properties (particle impact velocity, particle impact angle and particle impact number) and erosion depth to understand the erosion process. The results show that the Realizable κ-ε model can accurately predict the erosion profile and the erosion depth is consistent with the experiment results. Furthermore, high pressure will aggravate surface damage and expand the area of slurry erosion. It has been demonstrated that computational fluid dynamics (CFD) and experimental approach can be used to identify and explain the erosion mechanisms in different regions where the surface morphologies reveal four erosion patterns, namely, micro-cutting, cracks, pits and plastic deformation.

2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Y. M. Abd-Elrhman ◽  
A. Abouel-Kasem ◽  
S. M. Ahmed ◽  
K. M. Emara

In the present work, stepwise erosion technique was carried out to investigate in detail the influence of impact angle on the erosion process of AISI 5117 steel. The number of impact sites and their morphologies at different impact angles were investigated using scanning electron microscope (SEM) examination and image analysis. The tests were carried out with particle concentration of 1 wt. %, and the impact velocity of slurry stream was 15 m/s. Silica sand—which has a nominal size range of 250–355 μm—was used as an erodent, using whirling-arm test rig. The results have shown that the number of craters, as expected, increases with the increase in the mass of erodent for all impact angles and this number decreases with the increase of the impact angle. In addition, the counted number of craters is larger than the calculated number of particles at any stage for all impact angles. This may be explained by the effect of the rebound effect of particles, the irregular shape for these particles, and particle fragmentation. The effect of impact angle based on the impact crater shape can be divided into two regions; the first region for θ ≤ 60 deg and the second region for θ ≥ 75 deg. The shape of the craters is related to the dominant erosion mechanisms of plowing and microcutting in the first region and indentation and lip extrusion in the second region. In the first region, the length of the tracks decreases with the increase of impact angle. The calculated size ranges are from few micrometers to 100 μm for the first region and to 50 μm in the second region. Chipping of the former impact sites by subsequent impact particles plays an important role in developing erosion.


2019 ◽  
Vol 19 (2) ◽  
pp. 28-53 ◽  
Author(s):  
M. H. Buszko ◽  
A. K. Krella

AbstractThe degradation of materials due to slurry erosion is the serious problem which occurs in the power industries. The paper presents actual knowledge about an influence of individual factors connected with flow conditions, particles and material properties on the slurry erosion resistance. Among the factors connected with operating conditions, an influence of impact angle, and velocity of impact, particle concertation and liquid temperature have been described. In case of the factors connected with solid particle properties, an influence of the size, shape and hardness have been discussed. In the part devoted to the impact of material properties, due to different types of materials, the issues of resistance to erosion of slurries related to the properties of steel, ceramics and polymers are discussed separately. In the paper has been shown that a change of any of mentioned factors causes a change in the erosion rate due to the synergistic effects that accompany to slurry degradation.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
M. A. Al-Bukhaiti ◽  
A. Abouel-Kasem ◽  
K. M. Emara ◽  
S. M. Ahmed

High chromium white irons (HCCIs) are used extensively throughout the mineral processing industry to handle erosive and corrosive slurries. This study is an investigation of the effect of impact angle and velocity on slurry erosion of HCCI. The tests were carried out using a rotating whirling-arm rig with particle concentration of 1 wt. %. Silica sand which has a nominal size range of 500–710 μm was used as an erodent. The results were obtained for angles of 30 deg, 45 deg, 60 deg, and 90 deg to the exposed surface and velocities of 5, 10, and 15 m/s. The highest erosion resistance of HCCI was at normal impact and the lowest at an angle of 30 deg, irrespective of velocity. The low erosion resistance at an oblique angle is due to large material removal by microcutting from ductile matrix and gross removal of carbides. The effect of velocity, over the studied range from 5 m/s to 15 m/s, on the increase in the erosion rate was minor. The change of impact velocity resulted in changing the slurry erosion mechanisms. At normal incidence, plastic indentation with extruded material of the ductile matrix was the dominant erosion mechanism at low impact velocity (5 m/s). With increasing impact velocity, the material was removed by the indentation of the ductile matrix and to smaller extent of carbide fracture. However, at high impact velocity (15 m/s), gross fracture and cracking of the carbides besides plastic indentation of the ductile matrix were the dominant erosion mechanisms.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Tahrim Alam ◽  
Md. Aminul Islam ◽  
Zoheir N. Farhat

Pipelines are the most flexible, economic, and convenient way for oil and gas transportation. Material degradation by slurry erosion is a common feature in oil transmission pipeline. In the present work, slurry erosion of AISI 1018, AISI 1080, API X42, and API X70 steels is investigated in terms of slurry velocity and target material microstructure. The slurry velocity and impact angle employed were 0.2, 0.29, 0.36, and 0.43 m s−1 and 90 deg, respectively. It is found that erosion rate increases with increasing slurry velocity. Scanning electron microscopy was employed to investigate the eroded surface and subsurface of the steels. Plastic deformation, microcutting, and fracture are identified as dominant erosion mechanisms. Pearlitic microstructure exhibits superior erosion resistance compared to ferrite depending upon slurry velocity and microstructural orientation.


2019 ◽  
Vol 252 ◽  
pp. 04008
Author(s):  
Jashanpreet Singh ◽  
Jatinder Pal Singh ◽  
Mandeep Singh ◽  
Miroslaw Szala

Present work is devoted to investigation of the slurry erosion wear in a 90° elbow by using commercial Computational fluid dynamics (CFD) code FLUENT. Discrete phase erosion wear model was used to predict erosion in 90° elbow by solving the governing equations through Euler-Lagrange scheme. Particle tracking was considered by using standard k-ε turbulence scheme for the flow of bottom ash slurry. Erosion wear in elbow was investigated along with velocity distribution and turbulence intensity. The radius-to-diameter (r/D) ratio was taken as 1.5. Results show that erosion rate increases with increase in velocity. Present numerical simulation model holds close agreement with previous studies. Distorted patterns appeared at low velocities. The V-shape pattern appeared on the outer wall of elbow at high velocities. The low velocity region occurs around circumference of elbow wall at outer wall of elbow due to stimulation of the drag forces near the wall region.


2014 ◽  
Vol 79 ◽  
pp. 1-7 ◽  
Author(s):  
Q.B. Nguyen ◽  
C.Y.H. Lim ◽  
V.B. Nguyen ◽  
Y.M. Wan ◽  
B. Nai ◽  
...  

2010 ◽  
Vol 139-141 ◽  
pp. 1303-1307
Author(s):  
Xiao Jing Yang ◽  
Yi Lin Chi ◽  
Guan Zhang He

The process of particle impacting and contacting curved surface of vane was studied, and the characteristics of particle size, particle initial velocity and its impacting direction affect the stress of subsurface were analyzed by using ANSYS/LS-DANY software. It is shown that the interaction between particles and surface of vane is affected by nonlinear factors such as the elastic-plastic property of material, the state of impacting and contacting and surface shape. The increment in particle size increases the stress of the surface impacted and the sphere of action is also enlarged. The influence of the size of particles is remarkable. Particle impact velocity is related to energy exchange and has influences on stress value and the area of surface deformation. Due to impact angle is related to shape of curved vane, so the distribution of stress is changed and the value of the stress in surface layer is also influenced when particles impact curved surface of vane from different directions. The research will be helpful to disclose the mechanics of the wear on the condition of particle impact.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
M. Minhaj ◽  
Bhupinder Singh ◽  
Sunny Zafar

Abstract A composite clad of Ni-based alloy and B4C was developed on austenitic steel substrate through microwave hybrid heating. The B4C was added with Ni-based alloy powder in various weight proportions (0%, 5%, 10%, and 20%). The clads were investigated for the microstructural details, nanohardness and slurry erosion performance. Silt collected from river Uhl was used as the erodent for the slurry erosion test. Slurry erosion performance of the clads was evaluated at an impact angle of 90 deg and jet velocity of 40 m/s. Microstructural characterization confirms the uniform distribution of hard (boride and carbide) phases in the Ni-based matrix of the microwave composite clads. The presence of hard phases in the Ni-based matrix enhanced the slurry erosion resistance performance.


Wear ◽  
1997 ◽  
Vol 203-204 ◽  
pp. 573-579 ◽  
Author(s):  
Y.I. Oka ◽  
H. Ohnogi ◽  
T. Hosokawa ◽  
M. Matsumura

Author(s):  
Soroor Karimi ◽  
Amir Mansouri ◽  
Siamack A. Shirazi ◽  
Brenton S. McLaury

Sand particles entrained in fluids can cause erosive wear and damage to piping materials by impacting their surfaces which could result in failure of the piping system. Several parameters have been determined to affect the erosion behavior and mechanism of solid particle erosion. Some of these parameters include surface material, particle impact speed and angle, and particle size, shape and hardness. However, the effect of particle size on the total erosion rate and local erosion pattern has not been thoroughly investigated. It has been observed that sand particles with various sizes cause different slurry erosion patterns. Changing the particle size alters the Stokes number and consequently produces different erosion patterns and magnitudes. Thus, the effects of particle size on total erosion rate and erosion pattern in a submerged slurry jet are investigated for different impingement angles. Experiments are performed on 316 stainless steel specimens for average particles sizes of 25, 75, 150, and 300 μm. The jet angle is varied to 45, 75 and 90 degrees, and the slurry jet velocity is set to 14 m/s. The erosion pattern of the specimen is examined by obtaining the 3D microscopic profile of the eroded specimen by means of an optical profiler. It is found that the erosion profile changes as the jet angle varies. It is also observed that erosion profile is significantly different for smaller particles as compared to the larger particles. Moreover, these differences become more pronounced as the jet angle decreases. The present work discusses the differences of erosion patterns produced by both large and small particles. Computational Fluid Dynamics (CFD) is also used to study the effect of particle size on particle trajectories, impact speed, and impact angle. Also, CFD results help in explaining the differences observed in the erosion profiles caused by different particle sizes.


Sign in / Sign up

Export Citation Format

Share Document