Slurry Erosion of Pipeline Steel: Effect of Velocity and Microstructure

2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Tahrim Alam ◽  
Md. Aminul Islam ◽  
Zoheir N. Farhat

Pipelines are the most flexible, economic, and convenient way for oil and gas transportation. Material degradation by slurry erosion is a common feature in oil transmission pipeline. In the present work, slurry erosion of AISI 1018, AISI 1080, API X42, and API X70 steels is investigated in terms of slurry velocity and target material microstructure. The slurry velocity and impact angle employed were 0.2, 0.29, 0.36, and 0.43 m s−1 and 90 deg, respectively. It is found that erosion rate increases with increasing slurry velocity. Scanning electron microscopy was employed to investigate the eroded surface and subsurface of the steels. Plastic deformation, microcutting, and fracture are identified as dominant erosion mechanisms. Pearlitic microstructure exhibits superior erosion resistance compared to ferrite depending upon slurry velocity and microstructural orientation.

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
M. A. Al-Bukhaiti ◽  
A. Abouel-Kasem ◽  
K. M. Emara ◽  
S. M. Ahmed

High chromium white irons (HCCIs) are used extensively throughout the mineral processing industry to handle erosive and corrosive slurries. This study is an investigation of the effect of impact angle and velocity on slurry erosion of HCCI. The tests were carried out using a rotating whirling-arm rig with particle concentration of 1 wt. %. Silica sand which has a nominal size range of 500–710 μm was used as an erodent. The results were obtained for angles of 30 deg, 45 deg, 60 deg, and 90 deg to the exposed surface and velocities of 5, 10, and 15 m/s. The highest erosion resistance of HCCI was at normal impact and the lowest at an angle of 30 deg, irrespective of velocity. The low erosion resistance at an oblique angle is due to large material removal by microcutting from ductile matrix and gross removal of carbides. The effect of velocity, over the studied range from 5 m/s to 15 m/s, on the increase in the erosion rate was minor. The change of impact velocity resulted in changing the slurry erosion mechanisms. At normal incidence, plastic indentation with extruded material of the ductile matrix was the dominant erosion mechanism at low impact velocity (5 m/s). With increasing impact velocity, the material was removed by the indentation of the ductile matrix and to smaller extent of carbide fracture. However, at high impact velocity (15 m/s), gross fracture and cracking of the carbides besides plastic indentation of the ductile matrix were the dominant erosion mechanisms.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
M. Minhaj ◽  
Bhupinder Singh ◽  
Sunny Zafar

Abstract A composite clad of Ni-based alloy and B4C was developed on austenitic steel substrate through microwave hybrid heating. The B4C was added with Ni-based alloy powder in various weight proportions (0%, 5%, 10%, and 20%). The clads were investigated for the microstructural details, nanohardness and slurry erosion performance. Silt collected from river Uhl was used as the erodent for the slurry erosion test. Slurry erosion performance of the clads was evaluated at an impact angle of 90 deg and jet velocity of 40 m/s. Microstructural characterization confirms the uniform distribution of hard (boride and carbide) phases in the Ni-based matrix of the microwave composite clads. The presence of hard phases in the Ni-based matrix enhanced the slurry erosion resistance performance.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Y. M. Abd-Elrhman ◽  
A. Abouel-Kasem ◽  
S. M. Ahmed ◽  
K. M. Emara

In the present work, stepwise erosion technique was carried out to investigate in detail the influence of impact angle on the erosion process of AISI 5117 steel. The number of impact sites and their morphologies at different impact angles were investigated using scanning electron microscope (SEM) examination and image analysis. The tests were carried out with particle concentration of 1 wt. %, and the impact velocity of slurry stream was 15 m/s. Silica sand—which has a nominal size range of 250–355 μm—was used as an erodent, using whirling-arm test rig. The results have shown that the number of craters, as expected, increases with the increase in the mass of erodent for all impact angles and this number decreases with the increase of the impact angle. In addition, the counted number of craters is larger than the calculated number of particles at any stage for all impact angles. This may be explained by the effect of the rebound effect of particles, the irregular shape for these particles, and particle fragmentation. The effect of impact angle based on the impact crater shape can be divided into two regions; the first region for θ ≤ 60 deg and the second region for θ ≥ 75 deg. The shape of the craters is related to the dominant erosion mechanisms of plowing and microcutting in the first region and indentation and lip extrusion in the second region. In the first region, the length of the tracks decreases with the increase of impact angle. The calculated size ranges are from few micrometers to 100 μm for the first region and to 50 μm in the second region. Chipping of the former impact sites by subsequent impact particles plays an important role in developing erosion.


2018 ◽  
Vol 70 (7) ◽  
pp. 1176-1186 ◽  
Author(s):  
Yasser Abdelrhman ◽  
Ahmed Abouel-Kasem ◽  
Karam Emara ◽  
Shemy Ahmed

PurposeThis paper aims to clarify the relationship between the slurry erosion and one of the case hardening treatments, i.e. boronizing in this study, for AISI-5117 steel alloy. AISI-5117 steel alloy was used because of its variety applications in the field of submarine equipment. Most of the slurry erosion factors such as velocity, impact angle and mechanism of erosion were studied at different impact angles.Design/methodology/approachAt first, the samples were prepared and subjected to the boronizing treatment in controlled atmosphere. By using a slurry erosion test-rig, all experiments for studying the slurry erosion factors were carried out. Moreover, the studied specimens were investigated via scanning electron microscope, optical microscope and X-ray diffraction to study the erosion mechanism in the different conditions.FindingsIt was expected that the boronization of the AISI-5117 steel would increase its slurry erosion resistance due to its positive impact on the surface hardness. However, the results observed show the opposite, where the boronization of AISI-5117 steel decreased its slurry erosion resistance as implied by the increase of the mass loss percentage at all impact angles.Originality/valueThis research, for the first time, exhibits the effect of boronizing treatment on the slurry erosion in different impact factors accompanied by the erosion mechanism at each impact angle.


Author(s):  
Xian-Kui Zhu ◽  
Brian N. Leis

Mechanical damage is one of the major threats to oil and gas transmission pipeline integrity, which has been the case now for decades. Although much work has been done in that context, due to the complexity of its effects mechanical damage severity remains difficult to quantify. Thus, work continues to better understand the failure mechanism and develop the means to screen damage severity. The present paper adopts a validated elastic-plastic finite element analysis (FEA) model to simulate mechanical dents in pipelines and to quantify the effects of damage through a broad parametric study. This considers the need for three-dimensional FEA models and the effects of FEA element type, soil constraint condition, indenter type, pipeline grade and initial pipe pressure on dent response. The FEA model is also used to assess the minimum wall thickness for which a dent has the minimal effect on pipeline integrity. Finally, application of the proposed FEA model is illustrated by successfully predicting the failure behavior of a dent in a full-scale fatigue test involving a modern pipeline steel.


2021 ◽  
Vol 27 (1) ◽  
pp. 36-42
Author(s):  
Kang Jin Huang ◽  
Kun Xia Wei ◽  
Ke Zhang ◽  
Wei Wei ◽  
Qing Bo Du ◽  
...  

Measurement while drilling (MWD) has been widely used in petroleum drilling engineering because it can realize borehole trajectory monitoring and improve the drilling speed. However, the slurry erosion will deteriorate and shorten the life of MWD. A user-defined function (UDF) code was developed to calculate the particle properties (particle impact velocity, particle impact angle and particle impact number) and erosion depth to understand the erosion process. The results show that the Realizable κ-ε model can accurately predict the erosion profile and the erosion depth is consistent with the experiment results. Furthermore, high pressure will aggravate surface damage and expand the area of slurry erosion. It has been demonstrated that computational fluid dynamics (CFD) and experimental approach can be used to identify and explain the erosion mechanisms in different regions where the surface morphologies reveal four erosion patterns, namely, micro-cutting, cracks, pits and plastic deformation.


2019 ◽  
Vol 19 (2) ◽  
pp. 28-53 ◽  
Author(s):  
M. H. Buszko ◽  
A. K. Krella

AbstractThe degradation of materials due to slurry erosion is the serious problem which occurs in the power industries. The paper presents actual knowledge about an influence of individual factors connected with flow conditions, particles and material properties on the slurry erosion resistance. Among the factors connected with operating conditions, an influence of impact angle, and velocity of impact, particle concertation and liquid temperature have been described. In case of the factors connected with solid particle properties, an influence of the size, shape and hardness have been discussed. In the part devoted to the impact of material properties, due to different types of materials, the issues of resistance to erosion of slurries related to the properties of steel, ceramics and polymers are discussed separately. In the paper has been shown that a change of any of mentioned factors causes a change in the erosion rate due to the synergistic effects that accompany to slurry degradation.


2009 ◽  
Vol 79-82 ◽  
pp. 1087-1090 ◽  
Author(s):  
Bin Li ◽  
Zong De Liu ◽  
Yong Chen ◽  
Li Ping Zhao

With an aim to investigate erosion properties, TiC/Fe composites fabricated by self -propagating high-temperature synthesis and pseudo heat isostatic pressing (SHS/PHIP) technique were studied experimentally. Phase composition, microstructure, composition and microhardness of the products are analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively. The elevated temperature erosion tests of the TiC/Fe composites were tested with the help of a GW/CS-MS type tester using SiO2 quartz and Al2O3 corundum as the abrasive. The influences of the different parameters such as impact angle, environment temperature, abrasive, on the erosion property of the TiC/Fe composites were studied. The morphology of the worn surface was analyzed with SEM to determine the erosion mechanisms.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Y. M. Abd-Elrhman ◽  
A. Abouel-Kasem ◽  
K. M. Emara ◽  
S. M. Ahmed

The paper reports the influence of carburizing on the slurry erosion behavior of AISI 5117 steel using a whirling-arm rig. The microstructure and hardness profile of the surface layer of carburized steel were investigated. For characterizing the slurry damage process and for better understanding of material removal at different angles, scanning electron microscope (SEM) images at different locations on eroded surface using stepwise erosion combined with relocation SEM were presented. The study is also focused on studying the erosion wear resistance properties of AISI 5117 steel after carburizing at different impact angles. The tests were carried out with particle concentration of 1 wt. %, and the impact velocity of slurry stream was 15 m/s. Silica sand has a nominal size range of 250 – 355 μm was used as an erodent. The results showed that, carburizing process of steel increased the erosion resistance and hardness compared with untreated material for all impact angles. The erosion resistance of AISI 5117 steel increases by 75%, 61%, 33%, 10% at an impact angle of 30 deg, 45 deg, 60 deg, and 90 deg, respectively, as result of carburizing, i.e., the effectiveness of carburizing was the highest at low impact angles. Treated and untreated specimens behaved as ductile material, and the maximum mass loss appeared at impact angle of 45 deg. Plough grooves and cutting lips appeared for acute impact angle, but the material extrusions were for normal impact angles. The erosion traces were wider and deeper for untreated specimens comparing by the shallower and superficial ones for the carburized specimens. Chipping of the former impact sites by subsequent impact particles plays an important role in developing erosion.


2017 ◽  
Vol 17 (2) ◽  
pp. 5-17 ◽  
Author(s):  
M. H. Buszko ◽  
A. K. Krella

AbstractDegradation of material caused by impacts of a solid particle (erodent) suspended in a liquid is called slurry erosion and is a major problem in the hydropower and maritime industry. Slurry erosion depends on many factors, e.g. liquid and erodent velocity, size, shape, angle of impact, hardness and number of erodents, and strength of a target material. The various types of test devices have been designed to investigate an effect of mentioned parameters on material resistance. In the paper are described main types of the test apparatus showing their main advantages and disadvantages. Some results of slurry erosion resistance of few groups of materials are also presented.


Sign in / Sign up

Export Citation Format

Share Document