scholarly journals PRECIPITATION STATE OF WARM WORKED AA7050 ALLOY: EFFECT ON TOUGHNESS BEHAVIOR

2021 ◽  
Vol 27 (2) ◽  
pp. 53-56
Author(s):  
Andrea Di Schino

Usually strength-toughness combination in aluminum alloys is improved by heat treatment (solid solution followed by quenching and reheating) after a deformation process at high temperature. In some cases a cold working step is added in the manufacturing process before heat treatment aimed to enhance the alloy strength. In recent time, some trials have been carried out finalized to replace the cold working step with a warm deformation. Such process route appeared to be quite effective in improving the toughness behavior of 7xxx alloys. Anyway e metallurgical explanation for such behavior has not still be reported . In this a comparison of the precipitation state following the two different routes is reported. Results show clear differences in the nanoprecipitation densities in the two cases, claiming for their responsibility in the definition of the toughness behavior.

2018 ◽  
Vol 941 ◽  
pp. 1348-1353
Author(s):  
Isaac Isarn ◽  
Jordi Jorba ◽  
Antoni Roca ◽  
Núria Llorca-Isern

Young’s modulus varies with crystallographic orientation, temperature and alloying, but also with cold working and heat treatment. In this work, the evolution of Young’s modulus in polycrystalline pure aluminium (99.5%) with different cold-working levels determined at room temperature is presented. The deformation process was carried out in a universal tension machine and measurements were performed by ultrasounds. The Young’s modulus diminished from 70 to 65 GPa for 0-5% of deformation (elongation) and then increased with successive cold-working (68 GPa for 8.5% of elongation). These values were obtained 8 hours after plastic deformation was applied. This behaviour is compared with the Young’s modulus determined by extensometry in the same material. In this case, the modulus decreased from 70 to 63 GPa (3.5% of elongation) and then increased until 68 GPa for 10% of elongation. Results obtained on pure iron (Armco) deformed in the same conditions are included for comparative purposes. Values of Young’s modulus measured during the springback process after plastic deformation at different level are also included. Values obtained are between 10-15% lower than those measured 8 hours after plastic deformation.


2005 ◽  
Vol 475-479 ◽  
pp. 1449-1454 ◽  
Author(s):  
Takeo Muroga ◽  
Takuya Nagasaka ◽  
A. Nishimura ◽  
J.M. Chen

Potential enhancement of mechanical properties of V-4Cr-4Ti by controlling precipitates of interstitial impurities (C, O and N) was investigated by means of various thermal and mechanical treatments. The increase in the cold working degree resulted in band structure of coarse Ti-CON precipitates having enhanced impact properties. Solid solution heat treatment followed by re-heating resulted in the formation of high density Ti-O-C precipitates enhancing high temperature strength. Combination of re-heating and cold rolling enhanced further the strength. Improvements in thermal and mechanical treatments are discussed for application of V-4Cr-4Ti to fusion structural materials.


2016 ◽  
Vol 61 (3) ◽  
pp. 1277-1282
Author(s):  
M. Polok-Rubiniec ◽  
J. Konieczny ◽  
K. Labisz ◽  
A. Włodarczyk-Fligier

Abstract This elaboration shows the effect of combined heat treatment and cold working on the structure and utility properties of alloyed copper. As the test material, alloyed copper CuTi4 was employed. The samples were subjected to treatment according to the following schema: 1st variant – supersaturation and ageing, 2nd variant – supersaturation, cold rolling and ageing. The paper presents the results of microstructure, hardness, and abrasion resistance. The analysis of the wipe profile geometry was realized using a Zeiss LSM 5 Exciter confocal microscope. Cold working of the supersaturated solid solution affects significantly its hardness but the cold plastic deformation causes deterioration of the wear resistance of the finally aged CuTi4 alloy.


Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


Author(s):  
M. Larsen ◽  
R.G. Rowe ◽  
D.W. Skelly

Microlaminate composites consisting of alternating layers of a high temperature intermetallic compound for elevated temperature strength and a ductile refractory metal for toughening may have uses in aircraft engine turbines. Microstructural stability at elevated temperatures is a crucial requirement for these composites. A microlaminate composite consisting of alternating layers of Cr2Nb and Nb(Cr) was produced by vapor phase deposition. The stability of the layers at elevated temperatures was investigated by cross-sectional TEM.The as-deposited composite consists of layers of a Nb(Cr) solid solution with a composition in atomic percent of 91% Nb and 9% Cr. It has a bcc structure with highly elongated grains. Alternating with this Nb(Cr) layer is the Cr2Nb layer. However, this layer has deposited as a fine grain Cr(Nb) solid solution with a metastable bcc structure and a lattice parameter about half way between that of pure Nb and pure Cr. The atomic composition of this layer is 60% Cr and 40% Nb. The interface between the layers in the as-deposited condition appears very flat (figure 1). After a two hour, 1200 °C heat treatment, the metastable Cr(Nb) layer transforms to the Cr2Nb phase with the C15 cubic structure. Grain coarsening occurs in the Nb(Cr) layer and the interface between the layers roughen. The roughening of the interface is a prelude to an instability of the interface at higher heat treatment temperatures with perturbations of the Cr2Nb grains penetrating into the Nb(Cr) layer.


Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract CARLSON ALLOYS C600 AND C600 ESR have excellent mechanical properties from sub-zero to elevated temperatures with excellent resistance to oxidation at high temperatures. It is a solid-solution alloy that can be hardened only by cold working. High strength at temperature is combined with good workability. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Ni-470. Producer or source: G.O. Carlson Inc.


Alloy Digest ◽  
1993 ◽  
Vol 42 (10) ◽  

Abstract ALTEMP HX is an austenitic nickel-base alloy designed for outstanding oxidation and strength at high temperatures. The alloy is solid-solution strengthened. Applications include uses in the aerospace, heat treatment and petrochemical markets. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-442. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1992 ◽  
Vol 41 (5) ◽  

Abstract INCO ALLOY 330 is a nickel/iron/chromium austenitic alloy, not hardenable by heat treatment. It is a solid solution strengthened high-temperature alloy. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-403. Producer or source: Inco Alloys International Inc..


Alloy Digest ◽  
1974 ◽  
Vol 23 (4) ◽  

Abstract ALUMINUM 3004 is nominally an aluminum-manganese-magnesium alloy which cannot be hardened by heat treatment; however, it can be strain hardened by cold working. It has higher strength than Aluminum 3003 and good workability, weldability and resistance to corrosion. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-51. Producer or source: Various aluminum companies. Originally published June 1957, revised April 1974.


2019 ◽  
Vol 946 (4) ◽  
pp. 55-64 ◽  
Author(s):  
A.P. Karpik ◽  
D.V. Lisitsky

New conditions, technological capabilities and development prospects of the geodetic industry in recent time are characterized. The directions and strategy of the developing the industry, aimed at increasing its national importance by expanding the field of activity from the level of geoinformation to the level of its widespread use are substantiated. The solutions and tasks for the transfer of geo-information activities to a digital basis are listed. The definition of the geospatial activity’s concept is given. The conceptual structure and essentially new directions of geospatial support development of territories taking into account the perspective are offered. They are creating a single territorial geo-information space, designing and developing geo-cognitive technologies for forming geospatial knowledge, developing geo-cognitive technologies for preparing geo-spatial solutions to ensure territorial development and management. The technological levels of formalization and use of geospatial knowledge at preparing spatial solutions are considered. The forecast of expected efficiency received from geospatial activity in the digital economy is given. The scientific and technical directions for the successful geospatial supporting the spatial development of the country and solving tasks of transition to the digital economy are listed.


Sign in / Sign up

Export Citation Format

Share Document