Technological features of anode dissolution in a combined hardening treatment when developing high-speed rotors

2021 ◽  
pp. 555-557
Author(s):  
V.N. Sokol’nikov ◽  
G.A. Suhochev ◽  
S.N. Kodentsev

Is studied of the features of anodic dissolution in the process of local combined processing of metal removal points with surface defects arising during balancing of high-speed rotors in connection with the softening of working surfaces from unwanted technological heredity. The ways of improving the processes of their technological refinement using local hardening methods are shown, calculation formulas are given technological parameters of the anode process.

2021 ◽  
Vol 2021 (8) ◽  
pp. 4-13
Author(s):  
Mihail Tamarkin ◽  
Elina Tischenko ◽  
Van Nguen ◽  
Aleksey Mordovcev

In the paper there are carried out investigations on the definition of the basic technological parameters impact of centrifugal-rotary processing in abrasive environment upon formation of surface layer quality in the parts worked. There is used a finite element method of deformation modeling in granulated massive rotating under the impact of centrifugal forces with the use of the (Comsol Multiphysics) packet. On the basis of computer the high-speed shooting processing and theoretical investigations of the process dynamics there are defined distributions of pressures and granule motion speed in the working chamber. A specified model of abrasive granule encounter with the surface worked at the centrifugal rotary processing on the basis of the modern researches and analysis with the use of the Ansys software. The dependences are obtained for the definition of the maximum penetration depth of environment particles into the surface of the part worked, metal removal, surface roughness which adequacy is confirmed by the results of experimental investigations. There is developed a specified procedure for the computation of roughness height parameters of the surface worked and machining capacity. A specified procedure for the computation of metal removal from the surface worked of parts is offered. An algorithm for the optimization of an engineering process is developed. The investigation results are introduced into production.


2013 ◽  
Vol 712-715 ◽  
pp. 2323-2326
Author(s):  
Xing Guang Qi ◽  
Hai Lun Zhang ◽  
Xiao Ting Li

This paper presents an on-line surface defects detection system based on machine vision, which has high speed architecture and can perform high accurate detection for cold-rolled aluminum plate. The system consists of high speed camera and industrial personal computer (IPC) array which connected through Gigabit Ethernet, achieved seamless detection by redundant control. In order to acquire high processing speed, single IPC as processor receives from and deals with only one or two cameras' image. Experimental results show that the system with high accurate detection capability can satisfy the requirement of real time detection and find out the defects on the production line effectively.


2016 ◽  
Vol 7 (2) ◽  
pp. 86-92 ◽  
Author(s):  
Józef Kuczmaszewski ◽  
Ireneusz Zagórski ◽  
Piotr Zgórniak

Abstract This paper presents an overview of the state of knowledge on temperature measurement in the cutting area during magnesium alloy milling. Additionally, results of own research on chip temperature measurement during dry milling of magnesium alloys are included. Tested magnesium alloys are frequently used for manufacturing elements applied in the aerospace industry. The impact of technological parameters on the maximum chip temperature during milling is also analysed. This study is relevant due to the risk of chip ignition during the machining process.


1985 ◽  
Vol 107 (4) ◽  
pp. 325-335 ◽  
Author(s):  
R. Komanduri ◽  
D. G. Flom ◽  
M. Lee

Results of a four-year Advanced Machining Research Program (AMRP) to provide a science base for faster metal removal through high-speed machining (HSM), high-throughput machining (HTM) and laser-assisted machining (LAM) are presented. Emphasis was placed on turning and milling of aluminum-, nickel-base-, titanium-, and ferrous alloys. Experimental cutting speeds ranged from 0.0013 smm (0.004 sfpm) to 24,500 smm (80,000 sfpm). Chip formation in HSM is found to be associated with the formation of either a continuous, ribbon-like chip or a segmental (or shear-localized) chip. The former is favored by good thermal properties, low hardness, and fcc/bcc crystal structures, e.g., aluminum alloys and soft carbon steels, while the latter is favored by poor thermal properties, hcp structure, and high hardness, e.g., titanium alloys, nickel base superalloys, and hardened alloy steels. Mathematical models were developed to describe the primary features of chip formation in HSM. At ultra-high speed machining (UHSM) speeds, chip type does not change with speed nor does tool wear. However, at even moderately high speeds, tool wear is still the limiting factor when machining titanium alloys, superalloys, and special steels. Tool life and productivity can be increased significantly for special applications using two novel cutting tool concepts – ledge and rotary. With ledge inserts, titanium alloys can be machined (turning and face milling) five times faster than conventional, with long tool life (~ 30 min) and cost savings up to 78 percent. A stiffened rotary tool has yielded a tool life improvement of twenty times in turning Inconel 718 and about six times when machining titanium 6A1-4V. Significantly increased metal removal rates (up to 50 in.3/min on Inconel 718 and Ti 6A1-4V) have been achieved on a rigid, high-power precision lathe. Continuous wave CO2 LAM, though conceptually feasible, limits the opportunities to manufacture DOD components due to poor adsorption (~ 10 percent) together with high capital equipment and operating costs. Pulse LAM shows greater promise, especially if new laser source concepts such as face pump lasers are considered. Economic modeling has enabled assessment of HSM and LAM developments. Aluminum HSM has been demonstrated in a production environment and substantial payoffs are indicated in airframe applications.


1985 ◽  
Vol 107 (2) ◽  
pp. 99-106 ◽  
Author(s):  
R. Komanduri ◽  
M. Lee

The salient features of a simple, wear-tolerant cemented carbide tool are described. Results are presented for high-speed machining (3 to 5 times the conventional speeds) of titanium alloys in turning and face milling. This tool, termed the ledge cutting tool, has a thin (0.015 to 0.050 in.) ledge which overhangs a small distance (0.015 to 0.060 in.) equal to the depth of cut desired. Such a design permits only a limited amount of flank wear (determined by the thickness of the ledge) but continues to perform for a long period of time as a result of wear-back of the ledge. Under optimum conditions, the wear-back occurs predominantly by microchipping. Because of geometric restrictions, the ledge tool is applicable only to straight cuts in turning, facing, and boring, and to face milling and some peripheral milling. Also, the maximum depth of cut is somewhat limited by the ledge configuration. In turning, cutting time on titanium alloys can be as long as ≈ 30 min. or more, and metal removal of ≈ 60 in.3 can be achieved on a single edge. Wear-back rates in face milling are about 2 to 3 times higher than in straight turning. The higher rates are attributed here to the interrupted nature of cutting in milling. Use of a grade of cemented carbide (e.g., C1 Grade) which is too tough or has too thick a ledge for a given application leads to excessive forces which can cause gross chipping of the ledge (rapid wear) and/or excessive deflection of the cutting tool with reduced depth of cut. Selection of a proper grade of carbide (e.g., Grades C2, C3, C4) for a given application results in uniform, low wear-back caused by microchipping. Because of the end cutting edge angle (though small, ≈ 1 deg) used, the ledge tool can generate a slight taper on very long parts; hence an N.C. tool offset may be necessary to compensate for wear-back. The ledge tool is found to give excellent finish (1 to 3 μm) in both turning and face milling. In general, conventional tooling with slight modifications can be used for ledge machining. The ledge tool can also be used for machining cast iron at very high speeds.


Author(s):  
Leonid Yaroshenko ◽  
Igor Kupchuk ◽  
Mykhailo Zamrii

The paper analyzes current state and prospects of further development of technology and equipment for mechanization and automation of finishing and cleaning of details. It is stated that the most effective for this purpose are the methods of abrasive machining, which include bulk galvanizing, vibration, centrifugal-rotary and centrifugal-planetary processing. These methods reduce the complexity and cost of processing, which in some cases reaches 20% of the total cost of manufacturing parts. Each of these methods has a different level of efficiency, certain advantages and disadvantages, the level of versatility and scope of effective application. The processes of vibration processing are quite deeply studied, for its industrial mass-produced technological equipment, but they have certain shortcomings that limit their use for further widespread implementation. Centrifugal-rotary processing is a more productive process of three-dimensional finishing and cleaning treatment, but its scope is limited by the possibility of processing parts that are not complex, usually flat. The most productive methods of finishing and cleaning of details include centrifugal-planetary volume processing which high efficiency is caused by repeated loading of particles of working load by inertial forces that creates preconditions for the solutions of a wide range of technological problems, for example, processing of details of difficult form, small weight and the sizes from materials of high hardness or viscosity that represents a serious problem for other methods of volume processing. The constructive scheme is offered in the work and the influence of the composition of the abrasive free-granular working environment on the productivity of the machine for centrifugal-planetary processing of details is investigated. The kinetics of metal removal from the surface of machined parts using different types of abrasive working environment is analyzed. The results of comparative machining of parts in a torus vibrating machine and a machine for centrifugal-planetary machining are given. It is shown that the simultaneous use of centrifugal-planetary and vibration processing methods allows to increase the intensity of the process while ensuring high quality machining of parts of relatively complex shape. The constructive scheme of the machine which allows to implement the specified combined method of processing is offered and described.


2022 ◽  
Vol 2022 (1) ◽  
pp. 3-10
Author(s):  
Larisa Petrova ◽  
Vladimir Alexandrov ◽  
Viktor Vdovin ◽  
Pyotr Demin

The study of the gas nitriding method, which allows obtaining high-quality diffuse layers in high-speed steel P6M5 on the basis of an internal nitrogen hardening zone with no brittle nitride zone, has been viewed. Research results of phase composition of nitrided steel with a change in the nitrogen potential of the atmosphere during dilution of ammonia are presented. Nitrided tool increased resistance during drilling constructional steel and titanium alloy, which is due to precipitation hardening treatment of the internal nitrogenization zone using tungsten nitrides, is given.


1979 ◽  
Author(s):  
R. S. DeMuth ◽  
D. P. Fleming ◽  
R. A. Rio

This paper describes a flexible rotor system used for two-plane laser balancing and an experimental demonstration of the laser material removal method for balancing. A laboratory test rotor was modified to accept balancing corrections using a laser metal removal method while the rotor is at operating speed. The laser setup hardware required to balance the rotor using two correction planes is described. The test rig optical configuration and a neodymium glass laser were assembled and calibrated for material removal rates. Rotor amplitudes before and after balancing, trial and correction weights, rotor speed during operation of laser, and balancing time were documented. The rotor was balanced through the first bending critical speed using the laser material removal procedure to apply trial weights and correction weights without stopping the rotor.


Sign in / Sign up

Export Citation Format

Share Document