Synthesis, Electrical, Magnetic and LPG Sensing Behavior of Polypyrrole/In2O3 Polymer Nanocomposite

Nano Progress ◽  
2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Jakeer Husain ◽  
Yesappa L. ◽  
Rehana Anjum ◽  
Sweta M. Nayak ◽  
Anjum Begum ◽  
...  
2012 ◽  
Vol 72 (2) ◽  
pp. 190-196 ◽  
Author(s):  
Limeng Chen ◽  
Behic K. Goren ◽  
Rahmi Ozisik ◽  
Linda S. Schadler

2016 ◽  
Vol 164 ◽  
pp. 53-58 ◽  
Author(s):  
Snigdha Bhattacharjee ◽  
Pranab Kumar Sarkar ◽  
Nandini Roy ◽  
Asim Roy

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2942
Author(s):  
Bhausaheb V. Tawade ◽  
Ikeoluwa E. Apata ◽  
Nihar Pradhan ◽  
Alamgir Karim ◽  
Dharmaraj Raghavan

The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the ”grafting from” and ”grafting to” approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 139
Author(s):  
Oluranti Agboola ◽  
Ojo Sunday Isaac Fayomi ◽  
Ayoola Ayodeji ◽  
Augustine Omoniyi Ayeni ◽  
Edith E. Alagbe ◽  
...  

Globally, environmental challenges have been recognised as a matter of concern. Among these challenges are the reduced availability and quality of drinking water, and greenhouse gases that give rise to change in climate by entrapping heat, which result in respirational illness from smog and air pollution. Globally, the rate of demand for the use of freshwater has outgrown the rate of population increase; as the rapid growth in town and cities place a huge pressure on neighbouring water resources. Besides, the rapid growth in anthropogenic activities, such as the generation of energy and its conveyance, release carbon dioxide and other greenhouse gases, warming the planet. Polymer nanocomposite has played a significant role in finding solutions to current environmental problems. It has found interest due to its high potential for the reduction of gas emission, and elimination of pollutants, heavy metals, dyes, and oil in wastewater. The revolution of integrating developed novel nanomaterials such as nanoparticles, carbon nanotubes, nanofibers and activated carbon, in polymers, have instigated revitalizing and favourable inventive nanotechnologies for the treatment of wastewater and gas separation. This review discusses the effective employment of polymer nanocomposites for environmental utilizations. Polymer nanocomposite membranes for wastewater treatment and gas separation were reviewed together with their mechanisms. The use of polymer nanocomposites as an adsorbent for toxic metals ions removal and an adsorbent for dye removal were also discussed, together with the mechanism of the adsorption process. Patents in the utilization of innovative polymeric nanocomposite membranes for environmental utilizations were discussed.


Author(s):  
Pankaj Sonia ◽  
Jinesh Kumar Jain ◽  
Piyush Singhal ◽  
Kuldeep K. Saxena

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2128
Author(s):  
Paulo F. Teixeira ◽  
José A. Covas ◽  
Loïc Hilliou

The dispersion mechanisms in a clay-based polymer nanocomposite (CPNC) during twin-screw extrusion are studied by in-situ rheo-optical techniques, which relate the CPNC morphology with its viscosity. This methodology avoids the problems associated with post extrusion structural rearrangement. The polydimethylsiloxane (PDMS) matrix, which can be processed at ambient and low temperatures, is used to bypass any issues associated with thermal degradation. Local heating in the first part of the extruder allows testing of the usefulness of low matrix viscosity to enhance polymer intercalation before applying larger stresses for clay dispersion. The comparison of clay particle sizes measured in line with models for the kinetics of particle dispersion indicates that larger screw speeds promote the break-up of clay particles, whereas smaller screw speeds favor the erosion of the clay tactoids. Thus, different levels of clay dispersion are generated, which do not simply relate to a progressively better PDMS intercalation and higher clay exfoliation as screw speed is increased. Reducing the PDMS viscosity in the first mixing zone of the screw facilitates dispersion at lower screw speeds, but a complex interplay between stresses and residence times at larger screw speeds is observed. More importantly, the results underline that the use of larger stresses is inefficient per se in dispersing clay if sufficient time is not given for PDMS to intercalate the clay galleries and thus facilitate tactoid disruption or erosion.


Sign in / Sign up

Export Citation Format

Share Document