REGULARITIES OF DEVELOPMENT OF BIOFILM OF BACTERIA AT THE NATIVE PHASES OF THEIR FORMATION IN VITRO

Author(s):  
I. B. Pavlova ◽  
◽  
A. B. Kononenko ◽  
D. A. Bannikova ◽  
G. S. Tolmachyova ◽  
...  

The objects of research were the bacterial cultures of the genera Salmonella, Escherichia, Pseudomonas, Staphylococcus. The morphology of biofilms and the phases of its development were studied by the method of light and scanning electron microscopy. To study the formation of biofilms in liquid nutrient media, 24-hour microorganism cultures in S-form grown on dense or liquid nutrient media were used. The material was incubated for 24 hours at 37 °C. Then the cover glasses with biofilms formed on them were extracted with tweezers and placed in Petri dishes with filters laid on the bottom (for electron microscopy). In order to preserve the natural architectonics, were fixed by vapor of 25% glutaraldehyde during 3...5 hours. For contrasting preparations, vapor of 2...4% solution of osmic acid were used for 2...3 minutes. The laws of biofilm formation in conditionally pathogenic and pathogenic bacteria were experimentally confirmed: adhesion of single cells, association of exopolysaccharide matrix into clusters, formation of mature biofilm. SEM method shows the possibility of forming a multilayer structure of biofilm, which determines their increased resistance to antimicrobial agents (antibiotics, disinfectants).

Author(s):  
A. B. Kononenko ◽  
◽  
I. B. Pavlova ◽  
D. A. Bannikova ◽  
S. V. Britova ◽  
...  

To study the process of biofilm formation, microorganisms were cultured in 96-well plates, on meat-peptone broth, stained with a 0,1% solution of crystalline violet for 10...15 minutes, after which the unbound dye was washed off. The quantitative accounting of the bound dye was carried out by spectrophotometry at a wavelength of 490 nm. The technique for making bacterial preparations for light and scanning electron microscopy on dodged glasses immersed in Petri dishes with a liquid nutrient medium is proposed. A suspension of bacteria at a concentration of 105 m.k/ml in a volume of 5 ml was shaken on Vortex apparatus and introduced into Petri dishes with 20 ml of meat-peptone broth. Sterile non-greased cover glasses were placed on sterile object glasses and immersed in a liquid nutrient medium in Petri dishes. The material was incubated for 18...24 hours at 37 °C. Then the cover slips were removed with tweezers and some of them were stained with 1% aqueous solution of methylene blue (for light microscopy), and some were placed in Petri dishes with bottomed filters (for electron microscopy). The latter, in order to preserve natural architectonics, were fixed in vivo by pairs of 25% glutaraldehyde for 3...5 hours. Vapors of 2...4% osmic acid solution were used for 2...3-minutes to contrast the preparations. After treatment with vapors of osmic acid, biofilms with included bacteria acquired yellowish or brown color. The obtained preparations after dehydration with propylene oxide vapors and spraying with gold ions were examined in a scanning electron microscope (SEM). The technique allows us to study the phases of development of biofilms and obtain objective data on the morphology of populations of pathogenic and conditionally pathogenic bacteria without disturbing natural architectonics. It is shown that the intensity of biofilm formation by pathogenic microorganisms, such as salmonella, Yersinia, Staphylococcus aureus was slightly higher than that of non-pathogenic: Escherichia, Proteus, Citrobacter, Enterobacter.


Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 355 ◽  
Author(s):  
Tse-Kai Fu ◽  
Sim-Kun Ng ◽  
Yi-En Chen ◽  
Yuan-Chuan Lee ◽  
Fruzsina Demeter ◽  
...  

More than 80% of infectious bacteria form biofilm, which is a bacterial cell community surrounded by secreted polysaccharides, proteins and glycolipids. Such bacterial superstructure increases resistance to antimicrobials and host defenses. Thus, to control these biofilm-forming pathogenic bacteria requires antimicrobial agents with novel mechanisms or properties. Pseudomonas aeruginosa, a Gram-negative opportunistic nosocomial pathogen, is a model strain to study biofilm development and correlation between biofilm formation and infection. In this study, a recombinant hemolymph plasma lectin (rHPLOE) cloned from Taiwanese Tachypleus tridentatus was expressed in an Escherichia coli system. This rHPLOE was shown to have the following properties: (1) Binding to P. aeruginosa PA14 biofilm through a unique molecular interaction with rhamnose-containing moieties on bacteria, leading to reduction of extracellular di-rhamnolipid (a biofilm regulator); (2) decreasing downstream quorum sensing factors, and inhibiting biofilm formation; (3) dispersing the mature biofilm of P. aeruginosa PA14 to improve the efficacies of antibiotics; (4) reducing P. aeruginosa PA14 cytotoxicity to human lung epithelial cells in vitro and (5) inhibiting P. aeruginosa PA14 infection of zebrafish embryos in vivo. Taken together, rHPLOE serves as an anti-biofilm agent with a novel mechanism of recognizing rhamnose moieties in lipopolysaccharides, di-rhamnolipid and structural polysaccharides (Psl) in biofilms. Thus rHPLOE links glycan-recognition to novel anti-biofilm strategies against pathogenic bacteria.


2020 ◽  
Vol 11 ◽  
pp. 37-43
Author(s):  
Prof. Teodora P. Popova ◽  
Toshka Petrova ◽  
Ignat Ignatov ◽  
Stoil Karadzhov

The antimicrobial action of the dietary supplement Oxidal® was tested using the classic Bauer and Kirby agar-gel diffusion method. Clinical and reference strains of Staphylococcus aureus and Escherichia coli were used in the studies. The tested dietary supplement showed a well-pronounced inhibitory effect against the microbial strains commensurable with that of the broad-spectrum chemotherapeutic agent Enrofloxacin and showed even higher activity than the broad spectrum antibiotic Thiamphenicol. The proven inhibitory effect of the tested dietary supplement against the examined pathogenic bacteria is in accordance with the established clinical effectiveness standards for antimicrobial agents.


2017 ◽  
Vol 68 (6) ◽  
pp. 1188-1192
Author(s):  
Daniela Avram ◽  
Nicolae Angelescu ◽  
Dan Nicolae Ungureanu ◽  
Ionica Ionita ◽  
Iulian Bancuta ◽  
...  

The study in vitro of the glass powders bioactivity was performed by soaking them in simulated body fluid for 3 to 21 days at a temperature of 37�C and pH = 7.20. The synthesis de novo of hydroxyapatite, post soaking was confirmed by Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The study of the antimicrobial activity was performed by microbiological examination on two strains of pathogenic bacteria involved in postoperative nosocomial infections.


2020 ◽  
Vol 20 (24) ◽  
pp. 2186-2191
Author(s):  
Lialyz Soares Pereira André ◽  
Renata Freire Alves Pereira ◽  
Felipe Ramos Pinheiro ◽  
Aislan Cristina Rheder Fagundes Pascoal ◽  
Vitor Francisco Ferreira ◽  
...  

Background: Resistance to antimicrobial agents is a major public health problem, being Staphylococcus aureus prevalent in infections in hospital and community environments and, admittedly, related to biofilm formation in biotic and abiotic surfaces. Biofilms form a complex and structured community of microorganisms surrounded by an extracellular matrix adhering to each other and to a surface that gives them even more protection from and resistance against the action of antimicrobial agents, as well as against host defenses. Methods: Aiming to control and solve these problems, our study sought to evaluate the action of 1,2,3- triazoles against a Staphylococcus aureus isolate in planktonic and in the biofilm form, evaluating the activity of this triazole through Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) tests. We have also performed cytotoxic evaluation and Scanning Electron Microscopy (SEM) of the biofilms under the treatment of the compound. The 1,2,3-triazole DAN 49 showed bacteriostatic and bactericidal activity (MIC and MBC 128 μg/mL). In addition, its presence interfered with the biofilm formation stage (1/2 MIC, p <0.000001) and demonstrated an effect on young preformed biofilm (2 MICs, p <0.05). Results: Scanning Electron Microscopy images showed a reduction in the cell population and the appearance of deformations on the surface of some bacteria in the biofilm under treatment with the compound. Conclusion: Therefore, it was possible to conclude the promising anti-biofilm potential of 1,2,3-triazole, demonstrating the importance of the synthesis of new compounds with biological activity.


2021 ◽  
pp. 088391152110142
Author(s):  
Velu Gomathy ◽  
Venkatesan Manigandan ◽  
Narasimman Vignesh ◽  
Aavula Thabitha ◽  
Ramachandran Saravanan

Biofilms play a key role in infectious diseases, as they may form on the surface and persist after treatment with various antimicrobial agents. The Staphylococcus aureus, Klebsiella pneumoniae, S. typhimurium, P. aeruginosa, and Escherichia coli most frequently associated with medical devices. Chitosan sulphate from marine litter (SCH-MW) was extracted and the mineral components were determined using atomic absorption spectroscopy (AAS). The degree of deacetylation (DA) of SCH was predicted 50% and 33.3% in crab and shrimp waste respectively. The elucidation of the structure of the SCH-MW was portrayed using FT-IR and 1H-NMR spectroscopy. The molecular mass of SCH-MW was determined with Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF). The teratogenicity of SCH-MW was characterized by the zebrafish embryo (ZFE) model. Antimicrobial activity of SCH-MW was tested with the agar well diffusion method; the inhibitory effect of SCH-MW on biofilm formation was assessed in 96 flat well polystyrene plates. The result revealed that a low concentration of crab-sulfated chitosan inhibited bacterial growth and significantly reduced the anti-biofilm activity of gram-negative and gram-positive bacteria relatively to shrimp. It is potentially against the biofilm formation of pathogenic bacteria.


Author(s):  
Kamni Rajput ◽  
Ramesh Chandra Dubey

In this paper, an investigation on lactic acid bacterial isolates from ethnic goat raw milk samples were examined for their probiotic potential and safety parameters. For this purpose, isolated bacterial cultures were screened based on certain parameters viz., sugar fermentation, tolerance to temperature, salt, low pH, bile salts, and phenol resistance. After that, these bacterial cultures were more estimated in vitro for auto-aggregation, cell surface hydrophobicity, response to simulated stomach duodenum channel, antibiotic resistance, and antimicrobial activity. Besides, probiotic traits show the absence of gelatinase and hemolytic activity supports its safety. The isolate G24 showed good viability at different pH, bile concentration, phenol resistance and response to simulated stomach duodenum passage but it did not show gelatinase and hemolytic activities. Isolate G24 was susceptible to amikacin, carbenicillin, kanamycin, ciprofloxacin, co-trimazine, nitrofurantoin, streptomycin, and tetracycline. Isolate G24 also exhibited antimicrobial action against five common pathogenic bacteria, such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogens, and Salmonella typhimurium. It displayed the maximum auto-aggregation, cell surface hydrophobicity to different hydrocarbons. Following molecular characterization the isolate G24 was identified as Enterococcus hirae with 16S rRNA gene sequencing and phylogeny. E. hirae G24 bears the excellent properties of probiotics.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1423
Author(s):  
Nicola Mangieri ◽  
Roberto Foschino ◽  
Claudia Picozzi

Shiga toxin-producing Escherichia coli are pathogenic bacteria able to form biofilms both on abiotic surfaces and on food, thus increasing risks for food consumers. Moreover, biofilms are difficult to remove and more resistant to antimicrobial agents compared to planktonic cells. Bacteriophages, natural predators of bacteria, can be used as an alternative to prevent biofilm formation or to remove pre-formed biofilm. In this work, four STEC able to produce biofilm were selected among 31 different strains and tested against single bacteriophages and two-phage cocktails. Results showed that our phages were able to reduce biofilm formation by 43.46% both when used as single phage preparation and as a cocktail formulation. Since one of the two cocktails had a slightly better performance, it was used to remove pre-existing biofilms. In this case, the phages were unable to destroy the biofilms and reduce the number of bacterial cells. Our data confirm that preventing biofilm formation in a food plant is better than trying to remove a preformed biofilm and the continuous presence of bacteriophages in the process environment could reduce the number of bacteria able to form biofilms and therefore improve the food safety.


2019 ◽  
Vol 49 (5) ◽  
Author(s):  
Rodrigo Casquero Cunha ◽  
Michelle Dias Hornes da Rosa ◽  
Cleomar da Silva ◽  
Francisco Denis Souza Santos ◽  
Fábio Pereira Leivas Leite

ABSTRACT: The genus Staphylococcus comprises some of the most important pathogenic bacteria for both humans and animals. It is responsible for bovine mastitis and canine otitis, besides being present in the microbiota of animals and as a contaminant in food. Its pathogenesis is related to the formation of capsule and biofilm, which contribute to its infectivity. The objective of this study was to observe the production of slime layer and formation of biofilm, which are related to the resistance to antimicrobial agents and presence of icaA and icaD genes, in 41 isolates of Staphylococcus spp. from different origins, provided by the Universidade Federal de Pelotas (UFPEL), Laboratório Regional de Diagnóstico (LRD). Strains of Staphylococcus spp. were cultivated in Congo red agar for capsule detection. Biofilm formation was detected using the 96-well microplate testing. Antimicrobial susceptibility testing was performed using the plate diffusion method. Part of the analyzed samples produced slime layer (36.6%) and formed biofilm (17.1%). However, six of those that formed biofilms were susceptible to the eight antibiotics tested in the antibiogram. In tests to determine the minimum bactericidal and inhibitory concentrations, gentamicin resistance of biofilm-forming strains was greater than that of non-forming strains. Ampicillin was the least effective antimicrobial drug (51%), followed by tetracycline (71%), neomycin (73%), and erythromycin (73%). Some isolates presented the icaA (6) and icaD (11) genes. Therefore, we suggested that the origin of an isolate can determine its expression of virulence factor and resistance to certain antibiotics.


Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 89 ◽  
Author(s):  
Shahabe Abullais Saquib ◽  
Nabeeh Abdullah AlQahtani ◽  
Irfan Ahmad ◽  
Mohammed Abdul Kader ◽  
Sami Saeed Al Shahrani ◽  
...  

Background: In the past few decades focus of research has been toward herbal medicines because of growing bacterial resistance and side effects of antimicrobial agents. The extract derived from the plants may increase the efficacy of antibiotics when used in combination against pathogenic bacteria. In the current study, the synergistic antibacterial efficacy of plant extracts in combination with antibiotics has been assessed on selected periodontal pathogens. Methods: Ethanolic extracts were prepared from Salvadora persica (Miswak) and Cinnamomum zeylanicum (Ceylon cinnamon), by the soxhalate method. Plaque samples were collected from clinical periodontitis patients to isolate and grow the periodontal pathobionts under favorable conditions. Susceptibility of bacteria to the extracts was assessed by gauging the diameter of the inhibition zones. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of plant extracts were determined against each bacterium. Synergistic activity of plants extract in combination with antibiotics against the bacteria was also assessed by measuring the diameter of the inhibition zones. Results: Ethanolic extract of both the plants showed an inhibitory effect on the proliferation and growth of all four strains of periodontal pathobionts. Maximum antibacterial activity was exhibited by C. zeylanicum against Tannerella forsythia (MIC = 1.56 ± 0.24 mg/mL, MBC = 6.25 ± 0.68 mg/mL), whereas among all the studied groups the minimum activity was reported by C. zeylanicum against Aggregatibacter actinomycetemcomitans the (MIC = 12.5 ± 3.25 mg/mL, MBC = 75 ± 8.23 mg/mL). Combination of herbal extracts with different antibiotics revealed a synergistic antibacterial effect. The best synergism was exhibited by S. persica with metronidazole against A. actinomycetemcomitans (27 ± 1.78). Conclusions: Current in vitro study showed variable antibacterial activity by experimented herbal extracts against periodontal pathobionts. The synergistic test showed significant antibacterial activity when plant extracts were combined with antibiotics.


Sign in / Sign up

Export Citation Format

Share Document