scholarly journals Influence of Additives on Flexural Strength of Roller Compacted Concrete

2021 ◽  
Vol 2 (1) ◽  
pp. 1-7
Author(s):  
Saad Issa Sarsam

Roller compacted concrete is considered as a sustainable solution. In the present investigation, three types of additives namely (fly ash, fumed silica, and hydrated lime) are implemented as partial replacement of Portland cement for preparation of roller compacted concrete slab samples using dense and gap aggregate gradation. The slab samples were prepared at optimum cement requirement of 12 % and at (2 and 4) % cement below and above the optimum. Beam specimens of (38 x 10 x 8) Cm were extracted from the slab samples using diamond saw. The specimens were subjected to flexural strength determination using two testing modes, the three and the four points loading. It was noticed that the flexural strength under four-points loading mode is lower by a range of (0.787 to 0.732) folds than that under three-points loading mode for dense and gap graded mixtures respectively. It was concluded that the flexural strength increases by (96.2, 84, and 17.2) % and (109, 86, and 9.3) % after replacement of (10, 12, and 15) % of cement by hydrated lime while it declines by (50, 64.6, and 77) % and (0.1, 30.8, and 63.5) % after replacement of (5, 7, and 10) % of cement by fumed silica for dense and gap graded aggregates respectively. The flexural strength of dense graded mixtures increases by 63 % at 20 % replacement by fly ash, however, it increases by (99.7, 53.8, and 1.0) % after replacement of (10, 12, and 15) % of cement by fly ash for gap graded aggregates respectively.

2020 ◽  
Vol 13 (3) ◽  
pp. 315-321
Author(s):  
Dhiraj Ahiwale ◽  
Rushikesh Khartode

Now days, the waste rice husk from rice mill, marble powder from tile industry and fly ash from steam power plant are necessary to utilize as partial replacement of cement for concrete production. Large scale production of cement required consumption of raw materials and energy as well as emissions to air which posse’s environmental threat in various areas of country. Apart from the environmental threat, there still exists the problem of shortage in many areas. Therefore, substitute material for concrete needs to be considered. The paper aims to analyze the compressive strength of concrete cubes and flexural strength of concrete beams made from partially replaced cement, sand, and coarse aggregate. This research study adopted in laboratory on 48 total specimens of grade M25 concrete cubes of size 150x150x150mm and concrte beams of size 100x100x500mm were casted. Out of the 48 concrete specimens cast, 6 each were made out 10%, 20%, and 30 % replacement of fly ash, rice husk ash and marble powder to cement in concrete. It was found that the compressive strength and flexural strength of concrete made from the mixture of 20 % partially replaced cement, sand and coarse aggregate was similar than the concrete made from without replaced cement , sand and coarse aggregate.


Buildings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 67 ◽  
Author(s):  
Jolanta Harasymiuk ◽  
Andrzej Rudziński

The use of industrial residues to replace natural resources for the production of building materials is economically and ecologically justified. Fly ash (FA) taken directly from electro-filters is commonly used as a cement replacement material. This is not the case, however, for old dumped fly ash (ODFA) that has been accumulating in on-site waste dumps for decades and currently has no practical use. It causes environmental degradation, which is not fully controlled by the governments of developed countries. The aim of the study was to assess the possibility of using ODFA as a partial replacement for sand in cement composites. ODFA replaced part of the sand mass (20% and 30%) in composites with a limited amount of cement (a cement-saving measure) and sand (saving non-renewable raw material resources). ODFA was activated by the addition of different proportions of hydrated lime, the purposes of which was to trigger a pozzolanic reaction in ODFA. The quantitative composition of the samples was chosen in such a way as to ensure the maximum durability and longevity of composites with a limited amount of cement. The 28-day samples were exposed to seawater attack for 120 days. After this period, the compressive strength of each sample series was determined. The results suggest the possibility of using ODFA with hydrated lime to lay town district road foundations and bike paths of 3.5 to 5 MPA compressive strength. What is more, these composites can be used in very aggressive environments.


2017 ◽  
Vol 79 (6) ◽  
Author(s):  
Musa Adamu ◽  
Bashar S. Mohammed ◽  
Nasir Shafiq

The rate of waste tire generation globally continues to escalate due to increase in vehicle usage. Scrap tires continue to pose serious environmental, health and aesthetic problems. Due limitation in the recycling of scrap tires, one of the most viable solution is to used crumb rubber from scrap tire as partial replacement to fine aggregate in concrete industry. This is rationalized as the production of concrete hit more than 3.8 billion cubic meters annually, therefore, it could provide a solution on conservation of natural aggregate and as well as improve properties of concrete. However, the major setback in the use of crumb rubber in concrete is loss in strength.  In this paper, crumb rubber was used to partially replaced fine aggregate at 0%, 10%, 20% and 30% by volume in roller compacted concrete for pavement applications to produce roller compacted rubbercrete (RCR) to improve its flexural strength and ductility. Several trials were done to achieve the combined grading as recommended by ACI 211.3R, and finally a combination of 55% fine aggregate, 40% coarse aggregate and 5% fine sand as mineral filler was used. In order to mitigate the effect of strength loss, silica fume and fly ash were used to replace natural fine sand as mineral fillers. The Results showed that fresh density, compressive, splitting and flexural strengths decreases with increase in partial replacement of fine aggregate with crumb rubber. However using silica fume as a mineral filler was successful in mitigating loss in compressive, tensile and flexural strengths for up to 20% crumb rubber replacement level, while fly ash as a mineral filler mitigated loss in strength for up to 10% crumb rubber compared natural fine sand mineral filler. The flexural strength was found to increase with 10% crumb rubber for all type of mineral filler


Author(s):  
S. B. Kandekar ◽  
◽  
S. K. Wakchaure ◽  

Materials are the most important component of building construction. The demands of construction material are increasing day by day significantly. This demand is increasing the material prices and scarcity of material in construction industry. To achieve economical and eco-friendly criteria naturally occurring material is selected. Clay is a natural material and it can be available easily. This paper interprets the experimental investigation on strength of concrete using clay as a partial replacement to binder content (cement) in concrete. The replacement percentages are grouped as 0%, 10%, 20%, 30%, 40% of clay and 5% of hydrated lime with cement in each series in M25 grade of concrete. To achieve the pozzolanic property of clay hydrated lime was added. Different tests are performed to determine the optimum percentage of clay as a replacement for binder content (cement) in concrete. The Compressive strength test, split tensile strength test and flexural strength test were performed on the specimens. Total 90 cubes of size 150 mm were prepared for compressive strength test, 30 cylinders of 150 mm diameter and 300 mm height were prepared for split tensile strength test and 30 beams of size 150 mm x 150 mm x 1000 mm were prepared to carry out the flexural strength test. The results are compared to find the ideal proportion of clay as a replacement for cement. It is found that 10% replacement with 5% hydrated lime gives satisfactory results.


2021 ◽  
Vol 889 (1) ◽  
pp. 012011
Author(s):  
Ajay Rana ◽  
Abhishek Sharma ◽  
Kshitij Jassal

Abstract In concrete industry, a huge amount of natural aggregates is used in the making of concrete every day. The environment is being exploited by mining for the gain of natural aggregates, resulting in an environmental instability in nature. As a result, an alternate source to substitute natural aggregates in concrete is required. A lot of waste materials have gain attention now a days into the concrete industry as a substitute to natural materials. Fly ash, a waste product of thermal power plants, meets the criterion for being utilised as an aggregate substitute in concrete because of its pozzolanic activity. Coarse fly ash is manufactured using a good manufacturing method and is light in weight. Keeping this into view, the impact of partial replacement of natural coarse aggregates with coarse fly ash aggregates produced using the colds bonded method is explored in this paper. The major focus of this study is on testing for flexural strength of self-cured concrete, as flexural strength is a key criterion for rigid pavement design. In this study, coarse fly ash aggregates are utilised in concrete in different proportions to substitute natural aggregates, and the optimal value for flexural strength is determined using a curing additive. The findings of this experiment indicated that when fly ash aggregates and curing additives were used optimally, the flexure strength improved, which is enough for the construction of rigid pavement as criteria fixed by Indian Standards.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4204 ◽  
Author(s):  
Wei-Ting Lin ◽  
Kae-Long Lin ◽  
Kailun Chen ◽  
Kinga Korniejenko ◽  
Marek Hebda ◽  
...  

Recently, many people around the world have been concerned with environmental protection and sustainability. The goal of various countries’ research has been focused on how to regenerate existing resources. Circulation fluidized bed combustion (CFBC) technology is one of the emerging combustion technologies for electricity generation and produces more than 800,000 tons of CFBC fly ash (CFA) per year for combustion. CFA has been widely applied in cement additive, new building materials and cement-based materials. The goal of this study was to discuss the engineering properties of roller-compacted concrete containing CFA. Test subjects included compressive strength, flexural strength, absorption, setting time, unit weight, sulfate resistance, SEM microscopic observations and XRD ingredient analysis. Test results indicate the following: (1) using CFA as a substitute of fine aggregates up to 10 wt.% would improve the development of later flexural strength; (2) the increases in pre-pressure would increase the compressive strength and unit weight and decrease absorption; (3) using CFA would reduce the initial setting time by 30%–60% and reduce the final setting time by 16%–20%; (4) using CFA would reduce the absorption; (5) using CFA would reduce the unit weight by 0.5%–2.8%, and the increases in pre-pressure would increase the unit weight by about 0.9%–2.1%; (6) CaO in CFA helps to improve sulfate resistance; (7) scanning electron microscopy (SEM) observation shows that the increases in pre-pressure would reduce the pores; and (8) X-ray diffraction (XRD) analysis shows that the inclusion of CFA would increase the content of Ca(OH)2 in concrete.


2019 ◽  
Vol 281 ◽  
pp. 01010
Author(s):  
Samer Abou Kheir ◽  
Jad Wakim ◽  
Elie Awwad

The polypropylene (PP) fibers in shotcrete has been used for ground support and building strengthening, since several decades. However, the recent trend is to use the waste material in cementbased mixes to produce an eco-friendly material. Such waste material is the incineration fly ash (FA) that is classified as a hazardous product. This study is intended to establish the mechanical properties of fiber reinforced mortar in addition to cement or sand partial replacement by fly ash, in terms of flexural strength testing. The mechanical properties reflect the influence of the dosage of fiber content and the proportion of the fly ash on the flexural strength. The percentage of cement or sand was replaced by 0, 10, 20, and 30% fly ash. The dosage of fibers was 0, 0.6, 1.2, and 1.8 kg/m3. This green mix with fibers provides a partial substitute of cement as it is cheaper, by incorporating waste product, and saving energy consumption in the production. Due to growing interest in sustainable construction, engineers and architects are motivated to choose such materials which are more sustainable.


2021 ◽  
Vol 3 (1) ◽  
pp. 1-5
Author(s):  
Saad Issa Sarsam

Prediction of the strength properties of roller compacted concrete from mathematical models is significant for rapid decision of the quality of the pavement. In the present assessment, roller compacted concrete slab samples have been prepared in the laboratory using 12 percentage of Portland cement by weight of aggregates. Cube, core, and beam specimens were extracted from the slab samples and tested for compressive, indirect tensile, and flexural strength at the age of 28 days. Strength test results were corelated among each other and mathematical models were obtained. It was observed that low significance of aggregates gradation type on the compressive and tensile strength exists. However, high influence of dense gradation on flexural strength could be detected. The flexural strength of dense graded mixture is higher than that of gap graded mixtures. The compressive strength of gap graded mixture is higher than that of dense graded mixture. It can be concluded that the flexural strength is higher than the tensile strength by (2.17 and 1.24) folds for dense and gap graded mixtures respectively. The compressive strength is higher than tensile strength by (5.72 and 4.87) folds for dense and gap graded mixtures respectively. The compressive strength is higher than the flexural strength by (3.4 and 2.49) folds for dense and gap graded roller compacted concrete respectively. The obtained mathematical models exhibit high coefficient of determination and may be implemented in verification of the specific strength property based on other measured strength properties of roller compacted concrete.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1629-1639
Author(s):  
Tareq S. Al-Attar ◽  
Basil S. Alshathr ◽  
Mahmood E. Mohammed

Currently, the use of  high-volume fly ash lightweight concrete, HVFALWC, has acquired popularity as a durable, resource-efficient, and an option of sustainability for varying concrete applications. Electrochemical characteristics such as half- cell potential, AC resistance, chloride penetration, free chloride, and pH value, up to 180 days were investigated for this type of concrete that uses 50% and 60% of fly ash as a replacement of Portland cement. The effect of using 10% hydrated lime powder as a partial substitute for the weight of cementitious materials for HVFALWC on electrochemical properties was also studied. The results in this study showed the possibility of producing friendly environmental structural lightweight concrete by using high volume fly ash (50% and 60%) as partial replacement by weight of cement. Furthermore, using 10% hydrated lime as partial replacement by weight of cementitious materials could be considered as a reliable measure to reduce the effect of chloride ions in the corrosion process.


2016 ◽  
Vol 16 ◽  
pp. 52-68 ◽  
Author(s):  
S. Krishna Rao ◽  
P. Sravana ◽  
T. Chandrasekhar Rao

In this paper an attempt has been made to know the effect of Fly Ash (FA) on Roller Compacted Concrete (RCC) properties like strength and abrasion resistance. The Cement was partially replaced by three kinds of replacements (20%, 40% and 60%) of class F Fly Ash. The RCC mixtures were designed to have a 28 days flexural strength of 5.0 N/mm2. The specimens were subjected to two types of abrasion resistance tests such as Contabro test and surface abrasion resistance test with rotating cutter besides Compressive and Flexural strength tests. Experimental results shows that the Cantabro loss and surface abrasion loss were increased with increase in Fly Ash content in relation with the strength of roller compacted concrete pavement at the ages from 7days to 180days compared to control mix concrete. Equations were established based on compressive strength and flexural strength which were influenced by cement replacement by Fly Ash and developed to predict abrasion resistance of FRCC at any age. Also a relationship was established between Cantabro loss and surface abrasion loss of FRCC regardless of age and percent replacement of Fly Ash.


Sign in / Sign up

Export Citation Format

Share Document