scholarly journals Electrochemical Characteristics of High-Volume Fly Ash Lightweight Aggregate Concrete Incorporating Hydrated Lime

2020 ◽  
Vol 38 (11A) ◽  
pp. 1629-1639
Author(s):  
Tareq S. Al-Attar ◽  
Basil S. Alshathr ◽  
Mahmood E. Mohammed

Currently, the use of  high-volume fly ash lightweight concrete, HVFALWC, has acquired popularity as a durable, resource-efficient, and an option of sustainability for varying concrete applications. Electrochemical characteristics such as half- cell potential, AC resistance, chloride penetration, free chloride, and pH value, up to 180 days were investigated for this type of concrete that uses 50% and 60% of fly ash as a replacement of Portland cement. The effect of using 10% hydrated lime powder as a partial substitute for the weight of cementitious materials for HVFALWC on electrochemical properties was also studied. The results in this study showed the possibility of producing friendly environmental structural lightweight concrete by using high volume fly ash (50% and 60%) as partial replacement by weight of cement. Furthermore, using 10% hydrated lime as partial replacement by weight of cementitious materials could be considered as a reliable measure to reduce the effect of chloride ions in the corrosion process.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3322
Author(s):  
Mugineysh Murali ◽  
Bashar S. Mohammed ◽  
Isyaka Abdulkadir ◽  
M. S. Liew ◽  
Wesam Salah Alaloul

Waste tire and fly ash (FA) are two waste materials whose disposal and rapid rate of accumulation are among the pressing sources of concern and threat to the environment. Although much research exists on the use of these materials in cementitious composites, very little literature is available on the effectiveness of combining them in high volumes for concrete production. This work aimed to utilize crumb rubber (CR) from waste tires as a partial replacement of fine aggregate at 15%, 22.25%, and 30% by volume, and high-volume fly ash (HVFA) replacement of cement at 50%, 60%, and 70% (by weight of cementitious materials) to produce high-volume fly ash–crumb rubber concrete (HVFA–CRC). Using the central composite design (CCD) option of the response surface methodology (RSM), 13 mixes were produced with different combinations and levels of the CR and FA (the input factors) on which the responses of interest (compressive, flexural, and tensile strengths) were experimentally investigated. Furthermore, the composite influence of CR and HVFA on the workability of the concrete was assessed using the slump test. The results showed a decline in the mechanical properties with increasing replacement levels of the CR and HVFA. However, up to 22.25% and 60% of CR and HVFA replacements, respectively, produced a structural HVFA–CRC with a compressive strength of more than 20 MPa at 28 days. Response predictive models were developed and validated using ANOVA at a 95% confidence level. The models had high R2 values ranging from 95.26 to 97.74%. Multi-objective optimization was performed and validated with less than 5% error between the predicted and experimental responses.


2016 ◽  
Vol 135 ◽  
pp. 148-157 ◽  
Author(s):  
Payam Shafigh ◽  
Mohammad A. Nomeli ◽  
U. Johnson Alengaram ◽  
Hilmi Bin Mahmud ◽  
Mohd Zamin Jumaat

Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2607 ◽  
Author(s):  
Chenhua Jin ◽  
Chang Wu ◽  
Chengcheng Feng ◽  
Qingfang Zhang ◽  
Ziheng Shangguan ◽  
...  

Strain-hardening cementitious composite (SHCC) is a kind of construction material that exhibits multiple cracking and strain-hardening behaviors. The partial replacement of cement with fly ash is beneficial to the formation of the tensile strain-hardening property of SHCC, the increase of environmental greenness, and the decrease of hydration heat, as well as the material cost. This study aimed to develop a sustainable construction material using a high dosage of fly ash (no less than 70% of the binder material by weight). Based on the micromechanics analysis and particle size distribution (PSD) optimization, six mixes with different fly ash to cement ratios (2.4–4.4) were designed. The mechanical properties of the developed high-volume fly ash SHCCs (HVFA-SHCCs) were investigated through tensile tests, compressive tests, and flexural tests. Test results showed that all specimens exhibited multiple cracking and strain-hardening behaviors under tension or bending, and the compressive strength of the designed mixes exceeded 30MPa at 28 days, which is suitable for structural applications. Fly ash proved to be beneficial in the improvement of tensile and flexural ductility, but an extremely high volume of fly ash can provide only limited improvement. The HVFA-SHCC mix FA3.2 (with fly ash to binder ratio of about 76% by weight) designed in this study is suggested for structural applications.


2020 ◽  
Vol 184 ◽  
pp. 01109
Author(s):  
C Chandana Priya ◽  
M V Seshagiri Rao ◽  
V Srinivasa Reddy ◽  
S Shrihari

SCC is expensive when compared with normal conventional concrete. Hence, it is desired to produce low cost SCC by replacing cement with higher percentages of fly ash, which is a no cost material and available in abundance. At the same time to achieve higher grade HVFASCC, micro silica which is otherwise condensed silica fume can also be used along with fly ash to enhance the strength properties of HVFASCC. By replacing fly ash in high volumes in the mix, high amount of pozzolanic material becomes available, majorly reactive silica, for which more calcium hydroxide is necessary for further pozzolanic reaction. As we are reducing cement quantity, the amount of calcium hydroxide available is reduced thus demanding external addition of hydrated lime which can be supplied as additive to cater to the need of calcium hydroxide required for reactive silica in fly ash.The present investigation aims to achieve strength for high volume fly ash self-compacting concrete. The replacement of cement with fly ash is made in 45%, 50%, 55%, 60%, 65% and 70% with 20% hydrated lime and 10% silica fume in one trial. In another trial, 30% hydrated lime and 10% silica fume is added with replacement of fly ash to cement varying in same percentages. The design mix is tested for workability and flowability and cubes are casted for compression strength test and tested at 28 day,, 56 day, and 90 day,.


2020 ◽  
Vol 27 ◽  
pp. 100985 ◽  
Author(s):  
Marcos A.S. Anjos ◽  
Aires Camões ◽  
Pedro Campos ◽  
Givanildo A. Azeredo ◽  
Ruan L.S. Ferreira

2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
El-Sayed Negim ◽  
Latipa Kozhamzharova ◽  
Yeligbayeva Gulzhakhan ◽  
Jamal Khatib ◽  
Lyazzat Bekbayeva ◽  
...  

This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.


2013 ◽  
Vol 368-370 ◽  
pp. 1061-1065 ◽  
Author(s):  
Steve W.M. Supit ◽  
Faiz U.A. Shaikh ◽  
Prabir K. Sarker

This paper evaluates the effect of Ultrafine Fly Ash (UFFA) and nanoSilica (NS) on compressive strength of high volume fly ash (HVFA) mortar at 7 days and 28 days. Three series of mortar mixes are considered in the first part of this study. In the first series the effect of high content of class F fly ash as partial replacement of cement at 40, 50 and 60% (by wt.) are considered. While in the second and third series, the UFFA and NS are used as partial replacement of cement at 5%, 8%, 10%, 12% and 15% and 1%, 2%, 4%, 6% and 8% (by wt.) of cement, respectively. The UFFA and the NS content which exhibited highest compressive strength in the above series are used in the second part where their effects on the compressive strength of HVFA mortars are evaluated. Results show that the mortar containing 10% UFFA as partial replacement of cement exhibited the highest compressive strength at both 7 and 28 days among all UFFA contents. Similarly, the mortar containing 2% NS as partial replacement of cement exhibited the best performance. Interestingly, the use of UFFA in HVFA mortars did not improve the compressive strength. However, the use of 2% and 4% NS showed improvement in the compressive strength of HVFA mortar containing 40% and 50% fly ash at both ages. The effects of NS and UFFA on the hydration and strength development of HVFA mortar is also evaluated through X-Ray Diffraction (XRD) test. Results also show that the UFFA and NS can significantly reduce the calcium hydroxide (CH) in HVFA mortars.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 233
Author(s):  
Elisabete R. Teixeira ◽  
Aires Camões ◽  
Fernando G. Branco ◽  
José Campos Matos

The objective of this work was to assess the use of biomass fly ash (BFA) as cement replacement material or as an alkalinity source in high volume fly ash mortar and concrete. Mortar formulations were prepared with different types of cement replacement: fly ash from thermal power plants, BFA, a blend of two pozzolans, and small amounts of BFA or/and hydrated lime (HL). Mortar formulations were tested both in the fresh and hardened state. The replacement of cement by the two fly ashes led to a decrease in the mechanical strength. The best strength values were obtained when higher HL content was introduced in mortars, however, mortars with the lower BFA content presented the best results for the majority of the tests. In general, BFA has a similar effect on cementitious mortars to coal fly ash, having good performance as cement replacement.


Sign in / Sign up

Export Citation Format

Share Document