Interaction of Irrigation and Nitrogen on Water Consumption Characteristics and Yield in Oat Variety Longyan 3 in Northwest Oasis Irrigation Area

2017 ◽  
Vol 43 (9) ◽  
pp. 1370 ◽  
Author(s):  
Fu-Xue FENG ◽  
Ping MU ◽  
Gui-Qin ZHAO ◽  
Ji-Kuan CHAI ◽  
Huan LIU ◽  
...  
2021 ◽  
Author(s):  
Xinjian Guan ◽  
Qiongying Du ◽  
Wenge Zhang ◽  
Baoyong Wang

Abstract Establishing and perfecting the water rights system is an important way to alleviate the shortage of water resources and realize the optimal allocation of water resources. Agriculture is an important user of water in various water-consumption industries, the confirmation of water rights in irrigation districts to farmers is the inevitable requirement for implementing fine irrigation in agricultural production. In this paper, a double-level water rights allocation model of national canals – farmer households in irrigation district is established. It takes into account the current water consumption of the canal system, the future water-saving potential and the constraint of total amount control at the canal level. It takes into account the asymmetric information of farmer households’ population and irrigation area at the farmer household level. Furthermore, the Gini coefficient method is used to construct the water rights allocation model among farmer households based on the principle of fairness. Finally, Wulanbuhe Irrigation Area in the Hetao Irrigation Area of Inner Mongolia is taken as an example. The results show that the allocated water rights of the national canals in the irrigation district are less than the current because of water-saving measures and water rights of farmer household get compensation or cut respectively. The research has fully tapped the water-saving potential of irrigation districts, refined the distribution of water rights of farmers and can provide a scientific basis for the development of water rights allocation in irrigation districts and water rights transactions between farmers.


2021 ◽  
Vol 264 ◽  
pp. 01044
Author(s):  
Fazliddin Juraev ◽  
Galib Karimov

This article presents the results of field experiments to irrigate intensive gardens, located in water-scarce areas, from the soil with special piles. Experiments were conducted in Kagan district of Bukhara region in 2016 to determine the optimal procedure for in-soil irrigation of apple variety "Pinc lady" in the intensive orchard, established in 2016 at the farm "Siyavush Kamron FOOD" in cooperation with Turkey. In this case, a mathematical model was developed to determine the irrigation area corresponding to the radius of propagation of the roots of three-year-old trees and to calculate water consumption. This makes it possible to determine the norms of irrigation of intensive garden trees. This method can be used to set half scrubby intensive gardens in such areas where water is insufficient and use energy-saving technologies in the future.


2017 ◽  
Vol 43 (9) ◽  
pp. 1347
Author(s):  
Qiao-Mei WANG ◽  
Zhi-Long FAN ◽  
Yan-Hua ZHAO ◽  
Wen YIN ◽  
Qiang CHAI

2020 ◽  
Vol 12 (14) ◽  
pp. 2317 ◽  
Author(s):  
Zhibin Liu ◽  
Yue Huang ◽  
Tie Liu ◽  
Junli Li ◽  
Wei Xing ◽  
...  

Human activities are mainly responsible for the Aral Sea crisis, and excessive farmland expansion and unreasonable irrigation regimes are the main manifestations. The conflicting needs of agricultural water consumption and ecological water demand of the Aral Sea are increasingly prominent. However, the quantitative relationship among the water balance elements in the oasis located in the lower reaches of the Amu Darya River Basin and their impact on the retreat of the Aral Sea remain unclear. Therefore, this study focused on the water consumption of the Nukus irrigation area in the delta of the Amu Darya River and analyzed the water balance variations and their impacts on the Aral Sea. The surface energy balance algorithm for land (SEBAL) was employed to retrieve daily and seasonal evapotranspiration (ET) levels from 1992 to 2018, and a water balance equation was established based on the results of a remote sensing evapotranspiration inversion. The results indicated that the actual evapotranspiration (ETa) simulated by the SEBAL model matched the crop evapotranspiration (ETc) calculated by the Penman–Monteith method well, and the correlation coefficients between the two ETa sources were greater than 0.8. The total ETa levels in the growing seasons decreased from 1992 to 2005 and increased from 2005 to 2015, which is consistent with the changes in the cultivated land area and inflows from the Amu Darya River. In 2000, 2005 and 2010, the groundwater recharge volumes into the Aral Sea during the growing season were 6.74×109 m3, 1.56×109 m3 and 8.40×109 m3; respectively; in the dry year of 2012, regional ET exceeded the river inflow, and 2.36×109 m3 of groundwater was extracted to supplement the shortage of irrigation water. There is a significant two-year lag correlation between the groundwater level and the area of the southern Aral Sea. This study can provide useful information for water resources management in the Aral Sea region.


Author(s):  
Helong Wang ◽  
Shiwu Wang ◽  
Jinhua Wen ◽  
Siqi Wang ◽  
Mingjiang Zhu

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1161
Author(s):  
Nana Yan ◽  
Bingfang Wu ◽  
Weiwei Zhu

The water crisis has become increasingly serious, particularly in arid and semiarid areas. Agricultural water productivity (AWP) is an important indicator for evaluating water use efficiency and agricultural water management. This study uses water consumption derived from satellite data, combined with statistical survey information, to analyze the spatiotemporal variations and driving factors of AWP at the region and county scales over the past 15 years (2002–2015) in the Turpan region (China). The results showed the increasing change trends of AWP throughout Turpan and its three counties. A multiple regression analysis was applied to evaluate AWP, agricultural production and water consumption with driving factors. The contribution of agricultural factors (fertilizer amount, pesticide use and irrigation area) was 86.3% for change of production and 93.3% for change of water consumption in Turpan. The synchronous changes associated with the similar factor contributions resulted in a nonsignificant change in AWP for the whole region. However, the significant increase in AWP in Toksun County was caused by a weakened effect of synchronous changes due to the difference between the largest contributing factors (irrigation area for production at 29.3% and temperature for water consumption at 35.4%). The different change trends of the AWP at regional and county levels indicated that agricultural planting structure adjustment could be an effective way to improve water productivity. This paper provides objective and new information to understand the effects of AWP changes at regional and county scales, which is beneficial for irrigation agriculture development in Turpan.


2020 ◽  
Vol 0 (6) ◽  
pp. 13-19
Author(s):  
Guzel Gumerova ◽  
Georgiy Gulyuk ◽  
Dmitry Kucher ◽  
Anatoly Shuravilin ◽  
Elena Piven

Data of long-term researches (2015–2018) in southern forest-steppe zone of the Republic of Bashkortostan, is justified theoretically and experimentally the mode of irrigation of potatoes on leached chernozems of unsatisfactory, satisfactory and good ameliorative condition of irrigated lands. For the growing periods of potatoes with different heat and moisture supply, the number of watering, the timing of their implementation, irrigation and irrigation norms are established. On lands with unsatisfactory meliorative state the number of irrigation depending on weather conditions of potato vegetation period varied from 0 to 3 (1.5 on average) with average irrigation norm – 990 m3/ha. With satisfactory meliorative state of lands the number of irrigation on average increased from 0 to 4 (2.3 on average) with irrigation norm – 1305 m3/ha. On lands with good meliorative state the number of irrigation was the highest – from 1 to 5 (3 on average) with average irrigation irrigation norm is 1653 m3/ha. It was noted that in the dry periods of potato vegetation the greatest number of watering was carried out (3–5 watering), and in the wet periods (2017) watering was not carried out except for the area with a good reclamation state, where only one irrigation was carried out by the norm of 550 m3/ha. Water consumption of potato was studied in dynamics as a whole during the growing season and the months of the growing season depending on weather conditions of vegetation period and land reclamation condition of irrigated lands, as well as in the control (without irrigation). The lowest total water consumption was in the area without irrigation and averaged 226.8 mm. In irrigated areas, its values increased to 319-353.4 mm. The average daily water consumption varied from 2.12 to 3.3 mm. The highest rates of potato water consumption were observed in June and July, and the lowest – in May and August. In the total water consumption of potatoes on the site without irrigation, the largest share was occupied by atmospheric precipitation and in addition to them the arrival of moisture from the soil. Irrigation water was used in irrigated areas along with precipitation, the share of which was 30.2–46.1 %.


Sign in / Sign up

Export Citation Format

Share Document