Coping with water scarcity in Kashafroud G-WADI Basin, Iran: climate change or growing demands?

2013 ◽  
Vol 5 (1) ◽  
pp. 96
Author(s):  
Torabi Palatkaleh Sedigheh ◽  
Sadeghi Niloofar ◽  
Estiri Kobra ◽  
Ashouri Meisam
2018 ◽  
Vol 57 (3) ◽  
pp. 307-321 ◽  
Author(s):  
Manzoor Hussain Memon ◽  
Naveed Aamir ◽  
Nadeem Ahmed

Climate change has now become a reality that has intensified the sufferings of people living in arid ecosystems. Decrease in rainfall, rise in temperature and increase in the frequency of extreme events are some of the changes observed in the semi-arid desert of district Tharparkar. For thousands of years, people of Tharparkar are coping with drought and aridity of the land by using indigenous knowledge. However, global changes in the climatic pattern and deterioration of social and economic conditions have pushed the inhabitants of this arid region into extreme vulnerable situation. This paper investigates the link between climate-induced natural disasters, particularly drought, from the perspective of changing climate patterns which have resulted in food insecurity and water scarcity. The paper analyses the rainfall pattern in the last 38 years—dividing it into two periods i.e. from 1975-1994 and 1995-2014. The findings of the paper have challenged the prevailing notions about aridity and rainfall patterns in Tharparkar district. The research found that there is an increase in average annual precipitation in the district with erratic patterns. Thus, the nature of drought in the district has changed from its historic pattern of less or no rainfall to more but erratic rainfall that is more threatening to livelihoods of the people that in turn have multiplier effect on water and food insecurity. In particularly, women are more vulnerable in the absence of social security and lack of basic necessities for their survival amidst drought. For instance, traditionally the burden of managing water resources falls on women, which leads to an increased work load during the time of drought and also water scarcity. JEL Classification: Q54, Q56, Q25, I30 Keywords: Climate, Environment and Development, Drought, Water, Poverty


2017 ◽  
Vol 7 (1) ◽  
pp. 6-18 ◽  
Author(s):  
Alejandro Yáñez-Arancibia ◽  
John W. Day

The arid border region that encompasses the American Southwest and the Mexican northwest is an area where the nexus of water scarcity and climate change in the face of growing human demands for water, emerging energy scarcity, and economic change comes into sharp focus.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samuel Lumborg ◽  
Samuel Tefera ◽  
Barry Munslow ◽  
Siobhan M. Mor

AbstractThis study explores the perceived influence of climate change on the health of Hamer pastoralists and their livestock in south-western Ethiopia. A combination of focus group discussions and key informant interviews were conducted with Hamer communities as well as local health workers, animal health workers and non-governmental organisation (NGO) staff. Thematic framework analysis was used to analyse the data. Reductions in rangeland, erratic rainfall, recurrent droughts and loss of seasonality were perceived to be the biggest climate challenges influencing the health and livelihoods of the Hamer. Communities were travelling greater distances to access sufficient grazing lands, and this was leading to livestock deaths and increases in ethnic violence. Reductions in suitable rangeland were also precipitating disease outbreaks in animals due to increased mixing of different herds. Negative health impacts in the community stemmed indirectly from decreases in livestock production, uncertain crop harvests and increased water scarcity. The remoteness of grazing lands has resulted in decreased availability of animal milk, contributing to malnutrition in vulnerable groups, including children. Water scarcity in the region has led to utilisation of unsafe water sources resulting in diarrhoeal illnesses. Further, seasonal shifts in climate-sensitive diseases such as malaria were also acknowledged. Poorly resourced healthcare facilities with limited accessibility combined with an absence of health education has amplified the community’s vulnerability to health challenges. The resilience and ambition for livelihood diversification amongst the Hamer was evident. The introduction of camels, increase in permanent settlements and new commercial ideas were transforming their livelihood strategies. However, the Hamer lack a voice to express their perspectives, challenges and ambitions. There needs to be collaborative dynamic dialogue between pastoral communities and the policy-makers to drive sustainable development in the area without compromising the values, traditions and knowledge of the pastoralists.


2020 ◽  
pp. 1-4
Author(s):  
Gabriel Lopez Porras

Despite international efforts to stop dryland degradation and expansion, current dryland pathways are predicted to result in large-scale migration, growing poverty and famine, and increasing climate change, land degradation, conflicts and water scarcity. Earth system science has played a key role in analysing dryland problems, and has been even incorporated in global assessments such as the ones made by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. However, policies addressing dryland degradation, like the ‘Mexican programme for the promotion of sustainable land management’, do not embrace an Earth system perspective, so they do not consider the complexity and non-linearity that underlie dryland problems. By exploring how this Mexican programme could integrate the Earth system perspective, this paper discusses how ’Earth system’ policies could better address dryland degradation and expansion in the Anthropocene.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 541
Author(s):  
Viviani C. Onishi ◽  
Iqbal M. Mujtaba

Water scarcity due to the ever-increasing worldwide demand and climate change is one of the greatest hurdles of our time [...]


2021 ◽  
Author(s):  
Naseer Ahmed Abbasi ◽  
Xiangzhou Xu

<p><strong>Abstracts:</strong> Influenced by global climate change, water shortages and other extreme weather, water scarcity in the world is an alarming sign. This article provides evidences regarding the Tunnel and Tianhe project’s feasibility and their technical, financial, political, socioeconomic and environmental aspects. Such as how to utilize the water vapour in the air and to build a 1000 km long tunnel project to fulfill the goal of solving water shortage in China. The projects are promising to solve the problem of water, food and drought in the country. In addition, the telecoupling framework helps to effectively understand and manage ecosystem services, as well as the different challenges associated with them. Such efforts can help find the ways for proper utilization of water resources and means of regulation.</p><p><strong>Key words: </strong>Sustainability; water shortage; transfer project</p>


2014 ◽  
Vol 18 (8) ◽  
pp. 2859-2883 ◽  
Author(s):  
M. I. Hejazi ◽  
J. Edmonds ◽  
L. Clarke ◽  
P. Kyle ◽  
E. Davies ◽  
...  

Abstract. Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community-integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5° × 0.5° resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W m−2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m−2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095, particularly with more stringent climate mitigation targets. Under the FFICT scenario, water scarcity is projected to increase, driven by higher water demands for bio-energy crops.


2004 ◽  
Vol 29 (2) ◽  
pp. 209-220 ◽  
Author(s):  
José Carlos de Araújo ◽  
Petra Döll ◽  
Andreas Güntner ◽  
Maarten Krol ◽  
Cläudia Beghini Rodrigues Abreu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document