scholarly journals MicroRNA-374a Promotes Hepatocellular Carcinoma Cell Proliferation by Targeting Mitogen-Inducible Gene 6 (MIG-6)

Author(s):  
Hui Li ◽  
Huicheng Chen ◽  
Haibin Wang ◽  
Yilong Dong ◽  
Min Yin ◽  
...  

Hepatocellular carcinoma (HCC) is a disease with poor prognosis rates and ineffective therapeutic options. Previous studies have reported the involvement of mitogen-inducible gene 6 (MIG-6) as a negative regulator in tumor formation. MicroRNAs (miRNAs) play crucial roles in the development of different types of cancer. However, the underlying mechanisms of miRNAs in HCC are poorly understood. This study was aimed to investigate the role of miR-374a in HCC and its role in the regulation of expression of MIG-6. The results showed that MIG-6 overexpression significantly inhibited cell viability of HepG2 cells after 4 days posttransfection. Moreover, MIG-6 was a direct target of miR-374a, and the expression of MIG-6 was remarkably downregulated by the overexpression of miR-374a in HepG2 cells. Furthermore, we found that overexpression of miR-374a promoted cell viability; however, the protective effect was abolished by MIG-6 overexpression. In addition, overexpression of miR-374a activated the EGFR and AKT/ERK signaling pathways by regulation of MIG-6. Our findings suggest that miR-374a could promote cell viability by targeting MIG-6 and activating the EGFR and AKT/ERK signaling pathways. These data provide a promising therapeutic strategy for HCC treatment.

2018 ◽  
Vol 49 (1) ◽  
pp. 217-225 ◽  
Author(s):  
Huibin Lu ◽  
Tian Jiang ◽  
Kewei Ren ◽  
Zongming Li Li ◽  
Jianzhuang Ren ◽  
...  

Background/Aims: Esophageal carcinoma is a frequently occurring cancer at upper gastrointestinal tract. We aimed to evaluate the roles and possible mechanism of Runt Related Transcription Factor 2 (RUNX2) in the development of esophageal cancer. Methods: The expression of RUNX2 in esophageal carcinoma tissues and cells was investigated by qRT-PCR. Effects of RUNX2 on cell viability, apoptosis, migration and invasion were assessed using MTT assay, flow cytometry assay/western blot analysis, and Transwell assays, respectively. Afterwards, effects of RUNX2 on of the activation of the PI3K/AKT and ERK pathways were explored by Western blot analysis. In addition, a PI3K/AKT pathway inhibitor LY294002 and an ERK inhibitor U0126 were applied to further verify the regulatory relationship between RUNX2 and the PI3K/AKT and ERK signaling pathways. Besides, the RUNX2 function on tumor formation in vivo was investigated by tumor xenograft experiment. Results: The result showed that RUNX2 was highly expressed in esophageal carcinoma tissues and cells. Knockdown of RUNX2 significantly inhibited TE-1 and EC-109 cell viability, repressed TE-1 cell migration and invasion, and increased TE-1 cell apoptosis. RUNX2 overexpression showed the opposite effects on HET-1A cells. Moreover, RUNX2-mediated TE-1 cell viability, migration and invasion were associated with the activation of the PI3K/AKT and ERK pathways. Besides, knockdown of RUNX2 markedly suppressed tumor formation in vivo. Conclusion: Our results indicate that RUNX2 may play an oncogenic role in esophageal carcinoma by activating the PI3K/ AKT and ERK pathways. RUNX2 may serve as a potent target for the treatment of esophageal carcinoma.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 940
Author(s):  
Chi-Yu Lai ◽  
Kun-Yun Yeh ◽  
Chiu-Ya Lin ◽  
Yang-Wen Hsieh ◽  
Hsin-Hung Lai ◽  
...  

MicroRNA-21 (miR-21) is one of the most frequently upregulated miRNAs in liver diseases such as nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). However, mechanistic pathways that connect NAFLD and HCC remain elusive. We developed a doxycycline (Dox)-inducible transgenic zebrafish model (LmiR21) which exhibited an upregulation of miR-21 in the liver, which in turn induced the full spectrum of NAFLD, including steatosis, inflammation, fibrosis, and HCC, in the LmiR21 fish. Diethylnitrosamine (DEN) treatment led to accelerated liver tumor formation and exacerbated their aggressiveness. Moreover, prolonged miR-21 expression for up to ten months induced nonalcoholic steatohepatitis (NASH)-related HCC (NAHCC). Immunoblotting and immunostaining confirmed the presence of miR-21 regulatory proteins (i.e., PTEN, SMAD7, p-AKT, p-SMAD3, and p-STAT3) in human nonviral HCC tissues and LmiR21 models. Thus, we demonstrated that miR-21 can induce NAHCC via at least three mechanisms: First, the occurrence of hepatic steatosis increases with the decrease of ptenb, pparaa, and activation of the PI3K/AKT pathway; second, miR-21 induces hepatic inflammation (or NASH) through an increase in inflammatory gene expression via STAT3 signaling pathways, and induces liver fibrosis through hepatic stellate cell (HSC) activation and collagen deposition via TGF-β/Smad3/Smad7 signaling pathways; finally, oncogenic activation of Smad3/Stat3 signaling pathways induces HCC. Our LmiR21 models showed similar molecular pathology to the human cancer samples in terms of initiation of lipid metabolism disorder, inflammation, fibrosis and activation of the PI3K/AKT, TGF-β/SMADs and STAT3 (PTS) oncogenic signaling pathways. Our findings indicate that miR-21 plays critical roles in the mechanistic perspectives of NAHCC development via the PTS signaling networks.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Langlang Liu ◽  
Yanzeng Wu ◽  
Chao Xu ◽  
Suchun Yu ◽  
Xiaopei Wu ◽  
...  

It is difficult to synthesize nano-β-tricalcium phosphate (nano-β-TCP) owing to special crystal habit. The aim of this work was to synthesize nano-β-TCP using ethanol-water system and characterize it by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Malvern laser particle size analyzer, and transmission electron microscope (TEM). In addition, the inhibitory effect of nano-β-TCP on human hepatocellular carcinoma (HepG2) cells was also investigated using MTT assay, lactate dehydrogenase (LDH) leakage test, and 4′-6-diamidino-2-phenylindole (DAPI) staining. The results showed that negatively charged rod-like nano-β-TCP with about 55 nm in diameter and 120 nm in length was synthesized, and the average particle size of nano-β-TCP was 72.7 nm. The cell viability revealed that nano-β-TCP caused reduced cell viability of HepG2 cells in a time- and dose-dependent manner. These findings presented here may provide valuable reference data to guide the design of nano-β-TCP-based anticancer drug carrier and therapeutic systems in the future.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jian Wang ◽  
Yamin Zhang ◽  
Lei Liu ◽  
Zilin Cui ◽  
Rui Shi ◽  
...  

Abstract Background Nuclear factor of activated T cells 2 (NFAT2) has been reported to regulate the development and malignancy of few tumors. In this study, we aimed to explore the effect of NFAT2 expression on cell fate of HepG2 cell and its potential mechanisms. Methods Firstly, the pcDNA3.1-NFAT2 plasmid was transfected into HepG2 cells to construct NFAT2 overexpressed HepG2 cells. Then, the chemical count kit-8 cell viability assay, Annexin V-FITC apoptosis detection, EdU labeling proliferation detection, transwell and wound healing experiments were performed. The expression of Egr2 and FasL, and the phosphorylation of AKT and ERK, after ionomycin and PMA co-stimulation, was detected, while the Ca2+ mobilization stimulated by K+ solution was determined. At last, the mRNA and protein expression of NFAT2, Egr2, FasL, COX-2 and c-myc in carcinoma and adjacent tissues was investigated. Results The NFAT2 overexpression suppressed the cell viability, invasion and migration capabilities, and promoted apoptosis of HepG2 cells. NFAT2 overexpression induced the expression of Egr2 and FasL and suppressed the phosphorylation of AKT and ERK. The sensitivity and Ca2+ mobilization of HepG2 cells was also inhibited by NFAT2 overexpression. Compared with adjacent tissues, the carcinoma tissues expressed less NFAT2, Egr2, FasL and more COX-2 and c-myc. Conclusion The current study firstly suggested that NFAT2 suppressed the aggression and malignancy of HepG2 cells through inducing the expression of Egr2. The absence of NFAT2 and Egr2 in carcinoma tissues reminded us that NFAT2 may be a promising therapeutic target for hepatocellular carcinoma treatment.


2021 ◽  
pp. 1-11
Author(s):  
Shi Bing Su ◽  
Xiaole Chen ◽  
Peng Wang ◽  
Yunquan Luo ◽  
Yi Yu Lu ◽  
...  

Objective: The aim of this study was to assess the therapeutic effects of Jianpi Liqi decoction (JPLQD) in hepatocellular carcinoma (HCC) and explore its underlying mechanisms. Methods: The characteristics and outcomes of HCC patients with intermediate stage B who underwent sequential conventional transcatheter arterial chemoembolization (cTACE) and radiofrequency ablation (RFA) only or in conjunction with JPLQD were analysed retrospectively. The plasma proteins were screened using label-free quantitative proteomics analysis. The effective mechanisms of JPLQD were predicted through network pharmacology approach and partially verified by ELISA. Results: Clinical research demonstrated that the Karnofsky Performance Status (KPS), traditional Chinese medicine (TCM) syndrome scores, neutropenia and bilirubin, median progression-free survival (PFS), and median overall survival (OS) in HCC patients treated with JPLQD were superior to those in patients not treated with JPLQD (all P<0.05). The analysis of network pharmacology, combined with proteomics, suggested that 52 compounds targeted 80 potential targets, which were involved in the regulation of multiple signaling pathways, especially affecting the apoptosis-related pathways including TNF, p53, PI3K-AKT, and MAPK. Plasma IGFBP3 and CA2 were significantly up-regulated in HCC patients with sequential cTACE and RFA therapy treated with JPLQD than those in patients not treated with JPLQD (P<0.001). The AUC of the IGFBP3 and CA2 panel, estimated using ROC analysis for JPLQD efficacy evaluation, was 0.867. Conclusion: These data suggested that JPLQD improves the quality of life, prolongs the overall survival, protects liver function in HCC patients, and exhibits an anticancer activity against HCC. IGFBP3 and CA2 panels may be potential therapeutic targets and indicators in the efficacy evaluation for JPLQD treatment, and the effective mechanihsms involved in the regulation of multiple signaling pathways, possibly affected the regulation of apoptosis.


2020 ◽  
Vol 10 (4) ◽  
pp. 648-655
Author(s):  
Syarinta Adenina ◽  
Melva Louisa ◽  
Vivian Soetikno ◽  
Wawaimuli Arozal ◽  
Septelia Inawati Wanandi

Purpose : This study was intended to find out the impact of alpha mangostin administration on the epithelial-mesenchymal transition (EMT) markers and TGF-β/Smad pathways in hepatocellular carcinoma Hep-G2 cells surviving sorafenib. Methods: Hepatocellular carcinoma HepG2 cells were treated with sorafenib 10 μM. Cells surviving sorafenib treatment (HepG2surv) were then treated vehicle, sorafenib, alpha mangostin, or combination of sorafenib and alpha mangostin. Afterward, cells were observed for their morphology with an inverted microscope and counted for cell viability. The concentrations of transforming growth factor (TGF)-β1 in a culture medium were examined using ELISA. The mRNA expressions of TGF-β1, TGF-β1-receptor, Smad3, Smad7, E-cadherin, and vimentin were evaluated using quantitative reverse transcriptase–polymerase chain reaction. The protein level of E-cadherin was also determined using western blot analysis. Results: Treatment of alpha mangostin and sorafenib caused a significant decrease in the viability of sorafenib-surviving HepG2 cells versus control (both groups with P<0.05). Our study found that alpha mangostin treatment increased the expressions of vimentin (P<0.001 versus control). In contrast, alpha mangostin treatment tends to decrease the expressions of Smad7 and E-cadherin (both with P>0.05). In line with our findings, the expressions of TGF-β1 and Smad3 are significantly upregulated after alpha mangostin administration (both with P<0.05) versus control. Conclusion: Alpha mangostin reduced cell viability of sorafenib-surviving HepG2 cells; however, it also enhanced epithelial–mesenchymal transition markers by activating TGF-β/Smad pathways.


2020 ◽  
Author(s):  
Jian Wang ◽  
Yamin Zhang ◽  
Lei Liu ◽  
Zilin Cui ◽  
Rui Shi ◽  
...  

Abstract PURPOSE Nuclear factor of activated T cells 2 (NFAT2) has been reported to regulate the development and malignancy of few tumors. In this study, we aimed to explore the effect of NFAT2 expression on cell fate of HepG2 cell and its potential mechanisms. METHODS Firstly, the pcDNA3.1-NFAT2 plasmid was transfected into HepG2 cells to construct NFAT2 overexpressed HepG2 cells. Then, the chemical count kit-8 cell viability assay, Annexin V-FITC apoptosis detection, EdU labeling proliferation detection, transwell and wound healing experiments were performed. The expression of Egr2 and FasL, and the phosphorylation of AKT and ERK, after ionomycin and PMA co-stimulation, were detected, while the Ca2+ mobilization stimulated by K+ solution were determined. At last, the mRNA and protein expression of NFAT2, Egr2, FasL, COX-2 and c-myc in carcinoma and adjacent tissues was investigated. RESULTS The NFAT2 overexpression suppressed the cell viability, invasion and migration, and promoted apoptosis of HepG2 cells. NFAT2 overexpression induced the expression of Egr2 and FasL, and suppressed the phosphorylation of AKT and ERK. The sensitivity and Ca2+ mobilization of HepG2 cells was also inhibited by NFAT2 overexpression. Compared with adjacent tissues, the carcinoma tissues expressed less NFAT2, Egr2, FasL and more COX-2 and c-myc. CONCLUSION The current study firstly demonstrated that NFAT2 suppressed the aggression and malignancy of HepG2 cells through inducing the expression of Egr2. The absence of NFAT2 and Egr2 in carcinoma tissues reminded us that NFAT2 may be a promising therapeutic target for hepatocellular carcinoma treatment.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4135-4135
Author(s):  
Ashima Shukla ◽  
Melissa Shadoin ◽  
Samuel Pirruccello ◽  
Shantaram S. Joshi

Abstract INTRODUCTION: Chronic Lymphocytic Leukemia (CLL) represents the most common adult leukemia in the western world. Several reports have demonstrated that the constitutively activated MAPK-Erk signaling pathways promote CLL cell proliferation and survival. However, the precise molecular mechanisms that lead to deregulated MAPK signaling in CLL initiation and progression are not fully understood. We have previously reported that Sprouty2 (Spry2) is a negative regulator of BCR and MAPK-Erk signaling in poor prognosis CLL (American Society of Hematology, 56th Annual Meeting, San Francisco, CA, 2014). Here in follow up studies, we set to further determine molecular basis deregulation of Spry2 in patients with poor prognosis CLL. Spry2 is either epigenetically silenced or targeted by Microrna-21 (miR21) in several malignancies. MiR-21 plays a role of oncomir in CLL, which is significantly upregulated in CLL patients with poor prognosis specifically with Del 17p, High 38 and Zap70 expression. Notably, we observed a decrease in Spry2 expression in CLL cells expressing high levels of miR-21. Also, it is already reported that miR21 is regulated by STAT3 transcription factor in CLL patients with poor prognosis in refractory phase. However the precise molecular mechanism by which the miR21 leads to leukemic progression in poor prognosis CLL is not known. Here we demonstrate the molecular mechanism of miR21 to activate Syk mediated BCR and MAPK-Erk signaling by targeting Spry2 in CLL cells from poor prognosis patients. METHODOLOGY: We isolated CLL cells from peripheral blood of newly diagnosed high CD38 poor prognosis patients. For molecular analysis, in addition to primary CLL cells we use Mec-1 CLL cell line. To measure the levels of miR21 we used Taqman assay qPCR from Invitrogen. To decrease miR21 levels we used miR21 inhibitor (Invitrogen) and STAT3 inhibitor (SantaCruz). To overexpress miR21 we used pcDNAmir-21 construct from Addgene. Activation of BCR and MAPK-Erk signaling pathway was measured by levels of p-Erk and p-Syk. Expression of Spry2, Erk and Syk was measured by western blot analysis. RESULTS: To study if miR21 targets Spry2 in CLL cells, we first overexpressed miR21 in Mec-1 cells. We observed a significant decrease in Spry2 expression in Mec-1 cells expressing high levels of miR-21 compared to empty vector control. In our previous studies we observed Spry2 acts as a negative regulator of BCR and MAPK-Erk signaling. Therefore, we next studied the activity of Spry2 targeting signaling pathways in miR21-overexpressing CLL cells. We observed elevated levels of p-Erk and p-Syk in CLL cells overexpressing miR21. For control we used pcDNA-empty vector. Whereas upon miR21 knockdown in CLL cells resulted in stabilization of Spry2 expression and decrease in BCR and MAPK-Erk signaling. Also, targeting miR21 by STAT3 inhibitor leads to induction of spontaneous apoptosis in CLL cells. We next tested the effect of STAT3 inhibitor on primary CLL cells from 13 different patients. We measured the viability of CLL cells using MTT assay, we observed higher efficacy of STAT3 inhibitor over Syk and BRAF inhibitors on CLL cells. CONCLUSION: We conclude that Spry2 is a target of miR21 in CLL cells from poor prognosis patients. MiR21 targets Spry2 to activate Syk mediated BCR and MAPK signaling in CLL patients. Also, STAT3 can be used as therapeutic target for poor prognosis CLL patients with high miR21 expression. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Chunfeng Zhu ◽  
Mengyao Zhao ◽  
Liqiang Fan ◽  
Xuni Cao ◽  
Quanming Xia ◽  
...  

AbstractHepatocellular carcinoma (HCC) is one of the most prevalent and deadliest cancers. In this study, the anti-tumor effect of singular degree of polymerization (DP) chitooligosaccharides (COS) (DP 2–5) and the underlay molecular mechanisms were investigated on HCC cell line HepG2. MTT assay showed that (GlcN)5 have the best anti-proliferation effect among the different DP of COS (DP2-5). Furthermore, the administration of (GlcN)5 could decrease mitochondrial membrane potential, release cytochrome c into cytoplasm, activate the cleavage of Caspases9/3, thus inducing mitochondrial-mediated apoptosis in HepG2 cells (accounting for 24.57 ± 2.25%). In addition, (GlcN)5 treatment could increase the accumulation of autophagosomes. Further investigation showed that (GlcN)5 suppressed protective autophagy at the fusion of autophagosomes and lysosomes. Moreover, the inhibition of protective autophagy flux by (GlcN)5 could further decrease cell viability and increase the apoptosis rate. Our findings suggested that (GlcN)5 suppressed HepG2 proliferation through inducing apoptosis via the intrinsic pathway and impairing cell-protective autophagy. COS might have the potential to be an agent for lowering the risk of HCC.


Sign in / Sign up

Export Citation Format

Share Document