scholarly journals RUNX2 Plays An Oncogenic Role in Esophageal Carcinoma by Activating the PI3K/AKT and ERK Signaling Pathways

2018 ◽  
Vol 49 (1) ◽  
pp. 217-225 ◽  
Author(s):  
Huibin Lu ◽  
Tian Jiang ◽  
Kewei Ren ◽  
Zongming Li Li ◽  
Jianzhuang Ren ◽  
...  

Background/Aims: Esophageal carcinoma is a frequently occurring cancer at upper gastrointestinal tract. We aimed to evaluate the roles and possible mechanism of Runt Related Transcription Factor 2 (RUNX2) in the development of esophageal cancer. Methods: The expression of RUNX2 in esophageal carcinoma tissues and cells was investigated by qRT-PCR. Effects of RUNX2 on cell viability, apoptosis, migration and invasion were assessed using MTT assay, flow cytometry assay/western blot analysis, and Transwell assays, respectively. Afterwards, effects of RUNX2 on of the activation of the PI3K/AKT and ERK pathways were explored by Western blot analysis. In addition, a PI3K/AKT pathway inhibitor LY294002 and an ERK inhibitor U0126 were applied to further verify the regulatory relationship between RUNX2 and the PI3K/AKT and ERK signaling pathways. Besides, the RUNX2 function on tumor formation in vivo was investigated by tumor xenograft experiment. Results: The result showed that RUNX2 was highly expressed in esophageal carcinoma tissues and cells. Knockdown of RUNX2 significantly inhibited TE-1 and EC-109 cell viability, repressed TE-1 cell migration and invasion, and increased TE-1 cell apoptosis. RUNX2 overexpression showed the opposite effects on HET-1A cells. Moreover, RUNX2-mediated TE-1 cell viability, migration and invasion were associated with the activation of the PI3K/AKT and ERK pathways. Besides, knockdown of RUNX2 markedly suppressed tumor formation in vivo. Conclusion: Our results indicate that RUNX2 may play an oncogenic role in esophageal carcinoma by activating the PI3K/ AKT and ERK pathways. RUNX2 may serve as a potent target for the treatment of esophageal carcinoma.

2011 ◽  
Vol 29 (4_suppl) ◽  
pp. 216-216
Author(s):  
J. G. Trevino ◽  
S. R. Pillai ◽  
S. P. Chellappan

216 Background: The signaling pathways contributing to DNA-binding protein inhibitor Id1 expression and chemoresistance in pancreatic cancer remain unknown. Id1 plays a role in pancreatic tumor progression with tumor-promoting effects of nicotine regulating protein tyrosine kinase Src activation and Id1 expression, both associated with chemoresistance in other systems. We hypothesize Id1 expression regulates chemoresistance in pancreatic cancer through a nicotine-promoting Src-dependent pathway. Methods: We probed pancreatic cancer cell lines (L3.6pl, PANC-1, Mia-PaCa-2) for innate gemcitabine chemoresistance with cell viability MTT assay and western blot analysis of PARP cleavage programmed cell death. Gemcitabine-sensitive cells were exposed to rising gemcitabine concentrations to establish a resistant subtype, L3.6plGemRes. Protein analysis and mRNA expression were determined by western blot analysis and RT-PCR respectively. Induction of Src phosphorylation or Id1 expression was performed with nicotine (1 μM). Results: Inhibition of c-Src expression was performed with short-interfering RNA (siRNA). Nicotine-induced Src phosphorylation and Id1 expression. Inhibition of Src by siRNA resulted in decreased nicotine-induced Id1 expression. Inhibition of Src and Id1 expression by siRNA in innate or established gemcitabine resistant pancreatic cancer cells resulted in gemcitabine sensitization. To determine if nicotine contributes to gemcitabine chemoresistance, we exposed gemcitabine-sensitive cells to nicotine with subsequent exposure to gemcitabine IC50, 250 ng/ml, and cell viability assays confirmed a 2-fold increase in cell prolilferation and a 4.5-fold reduction in apoptosis. Further, nicotine induced phosphorylation of key signaling enzymes involved in proliferation and apoptosis, Erk1/2 and Akt respectively. Conclusions: In summary, we demonstrate that Id1, through a nicotine-promoting Src-dependent pathway, is necessary for establishment of a chemoresistant phenotype in pancreatic cancer cells. Understanding the signaling pathways involved in pancreatic tumor chemoresistance will lead to therapies resulting in improved tumor responses. No significant financial relationships to disclose.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daowei Zhang ◽  
Jiawen Wu ◽  
Jihong Wu ◽  
Shenghai Zhang

Background: Retinal photoreceptor (RP) cells are widely involved in retina-related diseases, and oxidative stress plays a critical role in retinal secondary damage. Herein, we investigated the effectiveness and potential mechanisms of autophagy of paeonol (Pae) in terms of oxidation resistance.Methods: The animal model was induced by light damage (LD) in vivo, whereas the in vitro model was established by H2O2 stimulation. The effectiveness of Pae was evaluated by hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, immunofluorescence, transmission electron microscopy, electroretinogram, and Western blot analysis in vivo, and the underlying mechanisms of Pae were assessed by Cell Counting Kit-8 assay, reactive oxygen species (ROS) assay, and Western blot analysis in 661W cells. We mainly evaluated the effects of Pae on apoptosis and autophagy.Results: Increased apoptosis of the LD-induced and decreased autophagy of RPs were mitigated by Pae treatment. Pea, which increased the expression of mitochondrial functional protein cytochrome c, reversed the decreased cell viability and autophagy induced by oxidative stress in 661W cells. Experiments showed that autophagy was downregulated in PINK1/Parkin dependent and the BNIP3L/Nix dependent pathways under H2O2 stimulation and was upregulated by Pae treatment. Pae increased the cell viability and reduced ROS levels through autophagy.Conclusion: Pretreatment with Pae preserved RP cells by enhancing autophagy, which protected retinal function.


2020 ◽  
Vol 52 (4) ◽  
pp. 345-362 ◽  
Author(s):  
Xiaodong Li ◽  
Qingshan Huang ◽  
Shenglin Wang ◽  
Zhen Huang ◽  
Fengqiang Yu ◽  
...  

Abstract Osteosarcoma is the most common primary malignant bone tumor, which occurs in adolescents. As reported by our previous studies, HER4 indicates a poor prognosis of primary osteosarcoma. However, its mechanisms in the pathogenesis of osteosarcoma have not yet been studied. The purpose of this study was to investigate the role of HER4 in osteosarcoma and whether the PI3K/AKT pathway is involved. In this study, western blot analysis was used to investigate the expression of HER4 protein in osteosarcoma tissues and cell lines. CCK8 and transwell assays were used to detect the effects of HER4 on the proliferation, migration, and invasion of osteosarcoma cells in vitro. The effects of HER4 on the growth and metastasis of osteosarcoma in vivo were detected by tumor formation and immunofluorescence in nude mice. The role of the PI3K/AKT pathway in HER4 regulation of the growth and metastasis of osteosarcoma was examined by western blot analysis and immunofluorescence assay. We found that HER4 protein was highly expressed in clinical osteosarcoma specimens and osteosarcoma cells. HER4 markedly promoted the proliferation, migration, and invasion of osteosarcoma cells in vitro as well as the growth and metastasis of osteosarcoma in vivo. HER4 overexpression upregulated the expression of phosphorylated protein kinase B (pAKT), proliferation marker antigen Ki67, and metastasis cell marker matrix metalloproteinase 9 (MMP9). Notably, PI3K/AKT inhibitor LY294002 significantly inhibited the effects of HER4 via the downregulation of pAKT, Ki67, and MMP9. Moreover, LY294002 markedly blocked the effects of HER4-induced upregulation of tumor malignancy. The present study suggests that HER4 may promote the growth and metastasis of osteosarcoma via the PI3K/AKT pathway. The HER4/PI3K/AKT pathway could serve as a potential target for the treatment of osteosarcoma.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yilong Zhu ◽  
Yiquan Li ◽  
Bing Bai ◽  
Chao Shang ◽  
Jinbo Fang ◽  
...  

In this study, we investigated the effects of Apoptin-induced endoplasmic reticulum (ER) stress on lipid metabolism, migration and invasion of HepG-2 cells, and preliminarily explored the relationship between endoplasmic reticulum stress, lipid metabolism, migration, and invasion. The effects of Apoptin on ER function and structure in HepG-2 cells were determined by flow cytometry, fluorescence staining and western blotting by assessing the expression levels of ER stress related proteins. The effects of Apoptin on HepG-2 cells’ lipid metabolism were determined by western blot analysis of the expression levels of triglyceride, cholesterol, and lipid metabolism related enzymes. The effects of Apoptin on HepG-2 cells’ migration and invasion were studied using migration and invasion assays and by Western-blot analysis of the expression of proteins involved in migration and invasion. The in vivo effects of endoplasmic reticulum stress on lipid metabolism, migration and invasion of HepG-2 cells were also investigated by immunohistochemistry analysis of tumor tissues from HepG2 cells xenografted nude mice models. Both in vitro and in vivo experiments showed that Apoptin can cause a strong and lasting ER stress response, damage ER functional structure, significantly change the expression levels of lipid metabolism related enzymes and reduce the migration and invasion abilities of HepG-2 cells. Apoptin can also affect HepG-2 cells’ lipid metabolism through endoplasmic reticulum stress and the abnormal expression of enzymes closely related to tumor migration and invasion. These results also showed that lipid metabolism may be one of the main inducements that reduce HepG-2 cells’ migration and invasion abilities.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3063-3063
Author(s):  
Antonia Beitzen-Heineke ◽  
Isabel Ben Batalla ◽  
Nikolaus Berenbrok ◽  
Sarina Paesler ◽  
Victoria Gensch ◽  
...  

Abstract Axl, a member of the TAM family of receptor tyrosine kinases, mediates survival and therapy resistance of different cancer cells. The Axl ligand growth-arrest specific gene 6 (Gas6) was discovered to promote proliferation of leukemia cells in acute and chronic myeloid leukemia and Axl was identified as a potential therapeutic target in these diseases. Based on these data we investigated the role of Axl in BCR-ABL negative myeloproliferative neoplasms (MPN) and the therapeutic potential of Axl blockade in this group of diseases. We studied the effects of Axl blockade using the small molecule Axl inhibitor BGB324 and performing a lentivirus shRNA mediated knockdown of Axl in human SET-2 and murine BaF3-Jak2V617F MPN cell lines. Pharmacologic Axl blockade resulted in a significant dose dependent decrease in viability of MPN cell lines as measured by WST-1 cell viability assay. Annexin+ staining revealed an increased rate of apoptotic cells upon BGB324 treatment for SET-2 (increase by 15% at 1µM, p<0.001) and BaF3-Jak2V617F cells (increase by 54% at 2µM, p<0.05). Moreover, Western Blot analysis showed higher levels of cleaved caspase 3 in BGB324 treated SET-2 cells and decreased levels of anti-apoptotic bcl-2 in BGB324 treated BaF3-Jak2V617F cells. Additionally, BrdU incorporation assays showed a dose dependent decrease in proliferating cells upon treatment with BGB324 in MPN cell lines (p<0.05). Genetic knockdown of Axl in SET-2 cells decreased cell viability by 75% (p<0.01), increased apoptosis levels as measured by Annexin+ staining by 61% (p<0.05) and decreased proliferation as measured by BrdU incorporation by 35% (p<0.001) compared to control-transduced cells. Furthermore, Western Blot analysis revealed that genetic knockdown of Axl resulted in decreased phosphorylation of Stat3 and Stat5 compared to control-transduced cells. Combined Axl and Jak2 blockade, using BGB324 and the Jak2-inhibitor ruxolitinib, showed additive effects on reducing cell viability in SET-2 and BaF3-Jak2V617F cells (p<0.01 and p<0.001, respectively). Western Blot analysis identified inhibition of Stat5 by BGB324 single treatment in SET-2 cells whereas additive effects of combined Axl and Jak2 blockade resulted from additional inhibition of Stat3. In BaF3-Jak2V617F cells, BGB324 single treatment resulted in downstream inhibition of Akt signaling whereas additive effects of combined Axl and Jak2 blockade were exerted via additional inhibition of Stat5, Stat3 and Erk. The finding that BGB324 inhibits growth of MPN cells was further corroborated in vivo. A xenograft tumor model with SET-2 cells was set up in vivo. SET-2 tumor bearing mice treated with BGB324 50mg/kg showed a slower tumor growth (n=8, p<0.01), with a 60% reduction of tumor weight compared to vehicle treated mice (n=8/8, p<0.01). As a second in vivo model, a systemic model of Jak2V617F driven disease was used. After intravenous injection of BaF3-Jak2V617F cells, mice were treated with 50mg/kg BGB324 or vehicle starting the day after inoculation. BGB324 treated mice had a longer overall survival compared to vehicle treated mice (n=10/11, p*<0.05). Furthermore, to evaluate the potential of BGB324 in primary MPN cells, peripheral blood mononuclear cells (PBMC) were isolated from MPN patients and healthy donors. Western Blot analysis showed higher levels of Axl expression by PBMC from MPN patients compared to PBMC from healthy donors. Moreover, colony-forming assays with PBMC were performed in the presence of different concentrations of BGB324. Here, a higher reduction in the number of colony forming units (BFU-E and CFU-GEMM) was observed in samples from MPN patients compared to healthy donors upon treatment with 1µM (77% vs. 5%, respectively; p<0.001) or 2µM (100% vs. 60%, respectively; p<0.01) of BGB324 (n=5/5). In conclusion, these data indicate therapeutic potential of Axl blockade in BCR-ABL negative MPN as monotherapy and in combination with Jak2-inhibition, supporting the need for clinical investigation. Disclosures von Amsberg: Novartis: Honoraria, Speakers Bureau; Ipson: Honoraria, Speakers Bureau; Bristol-Myers Squibb: Honoraria, Speakers Bureau; Sanofi: Honoraria, Speakers Bureau; Astellas: Honoraria, Speakers Bureau; MSD: Honoraria, Speakers Bureau. Loges:BerGenBio: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


2020 ◽  
Author(s):  
Jianfei Tu ◽  
Weiqian Chen ◽  
Miaomiao Meng ◽  
Siyu Zhao ◽  
Fazong Wu ◽  
...  

Abstract BackgroundCholangiocarcinoma is a relatively uncommon malignant tumor with high mortality. However, the molecular underpinnings behind malignant progression of cholangiocarcinoma are incompletely understood. Here we demonstrate that RNF216 plays a suppressive role in cholangiocarcinoma occurrence and metastasis.MethodsIHC and Western blot analysis were performed to examine the expression pattern of RNF216 and DIAPH3 in the clinical CRC cholangiocarcinoma. The relationship between RNF216 and DIAPH3 was then validated using in western blot analysis. The mechanism of RNF216-mediated ubiquitination modification of DIAPH3 was analyzed via Co-IP analysis. Gain- or loss-of-function approaches were manipulated to evaluate the modulatory effects of RNF216 and DIAPH3 on cell growth and metastasis. The mediatory effects of RNF216 and DIAPH3 on cancerogenesis were validated in vivo.ResultsClinical data indicated that expression levels of RNF216 were associated with favorable clinical outcomes. RNF216 was downregulated in cholangiocarcinoma and inhibited cell proliferation and colony formation in vitro and xenograft tumorigenicity in vivo. Moreover, RNF216 suppressed Invasion and migration of cholangiocarcinoma. Mechanistic investigations further showed that RNF216 was involved in the ubiquitination of DIAPH3, a member of formin family related to assembly of actin cytoskeleton. RNF216 elicits tumor suppressor role by promoting degradation of DIAPH3. Importantly, expression of DIAPH3 rescued RNF216-mediated suppression of proliferation, cell migration, and invasion. ConclusionOur findings uncover a suppressive role for RNF216 in cholangiocarcinoma proliferation and metastatic progression and provide novel insight into that RNF216 is a potential biomarker or serves as a therapeutic target for cholangiocarcinoma.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A799-A799
Author(s):  
Maciej Rogacki ◽  
Stefan Chmielewski ◽  
Magdalena Zawadzka ◽  
Aniela Gołas ◽  
Aleksandra Poczkaj ◽  
...  

BackgroundSTimulator of INterferon Genes (STING) is a key signaling protein involved in activation of the immune system in response to self-DNA. In recent years, STING signaling has been demonstrated to play a major role in activating the antitumor immune response and therefore is considered an attractive drug target in immuno-oncology. The first wave of STING agonists, cyclic-dinucleotide analogues of the internal ligand cGAMP, were developed for local, intratumoral administration. Herein we present the most recent profiling results of our frontrunner molecule RVU-27065, a potent and selective systemic STING agonist with a favorable drug profile.MethodsBinding to recombinant STING protein was examined using Fluorescence Thermal Shift and Fluorescence Polarisation. Primary activity screen was performed in THP-1 Dual reporter cells. Selectivity was confirmed in THP-1 reporter cells with knocked out STING or expressing STING variants. T cell viability and proliferation was assessed by flow cytometry using activated human T cells. PBMCs were isolated by density gradient from whole blood of healthy donors. Downstream STING pathway activation in cells treated with RVU-27065 was confirmed using Western blot analysis. BALB/c mice were inoculated with EMT6 tumor cells and the compound was administered intravenously followed by regular monitoring of tumor growth. Cured animals were rechallenged by repeated inoculation of EMT6 cells.ResultsRVU-27065 binds and strongly thermostabilizes recombinant STING proteins of all tested species. Binding to the protein results in activation of downstream signalling pathway, confirmed by western blot analysis. The agonist is characterized by selectivity and excellent potency in THP-1 dual reporter cells as well as in human PBMCs and dendritic cells. Short term incubation of RVU-27065 has no impact on T cell viability, activation or proliferation. Furthermore, STING activation with RVU-27065 leads to repolarization of immunosuppressive M2 macrophages into pro-inflammatory M1-like phenotype. In vivo efficacy of RVU-27065 was confirmed, leading to significant tumor growth inhibition and complete tumor regressions in an EMT6 mouse breast cancer syngeneic tumor model.ConclusionsRVU-27065 is a novel representative of a 3rd generation of Ryvu STING agonists – small-molecule, non-macrocyclic molecules built around a unique chemotype. The compound is characterized by high in vitro potency which translates to efficacy in vivo in preclinical animal models. Drug-like properties, excellent selectivity and a good safety profile make RVU-27065 an attractive candidate for further development for standalone as well as targeted delivery, which holds high potential for improved immunotherapy in cancer patients.


2018 ◽  
Vol 49 (6) ◽  
pp. 2099-2110 ◽  
Author(s):  
Sheng-Qun Liu ◽  
Jing-Liang Zhang ◽  
Zhan-Wen Li ◽  
Zhen-Hua Hu ◽  
Zhe Liu ◽  
...  

Background: Propofol is a commonly used anaesthetic with controversial effects on cancer cells. We aimed to explore the functional roles of propofol in hepatocellular carcinoma (HCC) cells as well as the underlying mechanisms. Methods: HepG2 and SMMC-7721 cells were used in this study. Firstly, the effects of propofol on cell viability, migration, invasion, apoptosis, and involved proteins were assessed by Cell Counting Kit-8 assay, Transwell assay, flow cytometry assay and Western blot analysis, respectively. Subsequently, alteration of miR-374a after stimulation of propofol was analyzed by qRT-PCR. miR-374a was overexpressed and the alteration of proteins in the Wnt/β-catenin and PI3K/AKT pathways was detected by Western blot analysis. The downstream factor of miR-374a was finally studied. Results: Propofol inhibited cell viability, migration and invasion but promoted apoptosis of HepG2 and SMMC-7721 cells. Meanwhile, cyclinD1, matrix metalloproteinase (MMP)-2 and MMP-9 were down-regulated while Bax/Bcl-2, cleaved caspase-3 and cleaved caspase-9 were up-regulated by propofol. Then, miR-374a level was reduced by propofol. Expression of Wnt3a, β-catenin, p-PI3K and p-AKT was decreased by propofol, whereas these decreases were reversed by miR-374a overexpression. Finally, TP53 was proven to be target of miR-374a in HepG2 cells. Conclusion: Propofol inhibited cell proliferation, migration and invasion while promoted cell apoptosis of HepG2 and SMMC-7721 cells through inhibiting the Wnt/β-catenin and PI3K/ AKT pathways via down-regulation of miR-374a. Besides, miR-374a affected propofol-treated HepG2 cells by targeting TP53.


2010 ◽  
Vol 113 (Special_Supplement) ◽  
pp. 228-235 ◽  
Author(s):  
Qiang Jia ◽  
Yanhe Li ◽  
Desheng Xu ◽  
Zhenjiang Li ◽  
Zhiyuan Zhang ◽  
...  

Object The authors sought to evaluate modification of the radiation response of C6 glioma cells in vitro and in vivo by inhibiting the expression of Ku70. To do so they investigated the effect of gene transfer involving a recombinant replication-defective adenovirus containing Ku70 short hairpin RNA (Ad-Ku70shRNA) combined with Gamma Knife treatment (GKT). Methods First, Ad-Ku70shRNA was transfected into C6 glioma cells and the expression of Ku70 was measured using Western blot analysis. In vitro, phenotypical changes in C6 cells, including proliferation, cell cycle modification, invasion ability, and apoptosis were evaluated using the MTT (3′(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) assay, Western blot analysis, and cell flow cytometry. In vivo, parental C6 cells transfected with Ad-Ku70shRNA were implanted stereotactically into the right caudate nucleus in Sprague-Dawley rats. After GKS, apoptosis was analyzed using the TUNEL (terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling) method. The inhibitory effects on growth and invasion that were induced by expression of proliferating cell nuclear antigen and matrix metalloproteinase–9 were determined using immunohistochemical analyses. Results The expression of Ku70 was clearly inhibited in C6 cells after transfection with Ad-Ku70shRNA. In vitro following transfection, the C6 cells showed improved responses to GKT, including suppression of proliferation and invasion as well as an increased apoptosis index. In vivo following transfection of Ad-Ku70shRNA, the therapeutic efficacy of GKT in rats with C6 gliomas was greatly enhanced and survival times in these animals were prolonged. Conclusions Our data support the potential for downregulation of Ku70 expression in enhancing the radiosensitivity of gliomas. The findings of our study indicate that targeted gene therapy–mediated inactivation of Ku70 may represent a promising strategy in improving the radioresponsiveness of gliomas to GKT.


2020 ◽  
Vol 20 (9) ◽  
pp. 1147-1156
Author(s):  
Hanrui Li ◽  
GeTao Du ◽  
Lu Yang ◽  
Liaojun Pang ◽  
Yonghua Zhan

Background: Hepatocellular carcinoma is cancer with many new cases and the highest mortality rate. Chemotherapy is the most commonly used method for the clinical treatment of hepatocellular carcinoma. Natural products have become clinically important chemotherapeutic drugs due to their great potential for pharmacological development. Many sesquiterpene lactone compounds have been proven to have antitumor effects on hepatocellular carcinoma. Objective: Britanin is a sesquiterpene lactone compound that can be considered for the treatment of hepatocellular carcinoma. The present study aimed to investigate the antitumor effect of britanin. Methods: BEL 7402 and HepG2 cells were used to study the cytotoxicity and antitumor effects of britanin. Preliminary studies on the nuclear factor kappa B pathway were conducted by western blot analysis. A BEL 7402-luc subcutaneous tumor model was established for the in vivo antitumor studies of britanin. In vivo bioluminescence imaging was conducted to monitor changes in tumor size. Results: The results of the cytotoxicity analysis showed that the IC50 values for britanin in BEL 7402 and HepG2 cells were 2.702μM and 6.006μM, respectively. The results of the colony formation demonstrated that the number of cells in a colony was reduced significantly after britanin treatment. And the results of transwell migration assays showed that the migration ability of tumor cells was significantly weakened after treatment with britanin. Tumor size measurements and staining results showed that tumor size was inhibited after britanin treatment. The western blot analysis results showed the inhibition of p65 protein expression and reduced the ratio of Bcl-2/Bax after treatment. Conclusion: A series of in vitro and in vivo experiments demonstrated that britanin had good antitumor effects and provided an option for hepatocellular carcinoma treatment.


Sign in / Sign up

Export Citation Format

Share Document