scholarly journals Experimental Results of Siloxanes Rubber Reinforced with Magnetic Fillers Used to Protect the Uman Factor to Electromagnetic Radiation

2019 ◽  
Vol 56 (1) ◽  
pp. 205-209
Author(s):  
Elena Valentina Stoian ◽  
Jana Pintea ◽  
Maria Cristiana Enescu ◽  
Carmen Otilia Rusanescu

The character of the original paper is to provide electromagnetic radiation absorbing material that attenuation characteristics of the electromagnetic field very good, as compared to the absorbent materials studied to date. This paper presents results of research on processing, characterization and behavior of composite materials based on silicone rubber used for electromagnetic shielding. In this work silicone rubbers is reinforced with magnetic fillers (iron silicon). The obtaining of composite materials was with the aid of a doctor blade technique. Doctor blade technique is a coating technique widely used for producing thin films on large area surfaces. The samples were processed in the laboratory using a plated nettling (PN), that was impregnated with a silicone rubber based composite containing powder of iron silicon (SI). Were achieved measurements of the both parts of the materials obtaining. These have shown an electromagnetic shielding effectiveness the order of 3.35-41.62 dB (white face) and 3.53-41.42 dB (gray face), in 1-18 GHz frequency range according to SR EN 50 147-1:1999. The paper tries to identify an absorbent material with the ability to protect human beings of electromagnetic radiation that surround us every day and every moment. With the exponential increase in development of commercial, aerospace, military and scientific electronic devices in modern society, electromagnetic radiation is becoming the fourth public pollution after the air, water and noise ones.

2020 ◽  
Vol 90 (21-22) ◽  
pp. 2504-2521
Author(s):  
Veronika Tunakova ◽  
Maros Tunak ◽  
Pavla Tesinova ◽  
Marie Seidlova ◽  
Jiri Prochazka

At present, much attention is focused on developing clothing fabrics with advanced functionality without compromising their visual, mechanical, or comfort properties. A fabric’s ability to prevent the penetration of electromagnetic radiation is an interesting added feature. In the published literature, there are many references describing the development and investigation of electromagnetic shielding textile structures using different electrically conductive additives. However, little attention has been given to the aesthetic and comfort properties of these special fabrics. Moreover, the availability of everyday fashion containing electromagnetic radiation protection is very limited. For this study, woven fabric made from a mixture of traditional fibers and extremely thin discrete stainless steel fibers developed in the authors’ previous research was used as a substrate. The fabric was digitally printed to provide an interesting design effect suitable for use in clothing and for making clothes for everyday wear. The main objective of this work is to determine whether digital printing is a suitable tool for changing the color and pattern of this metal fiber-containing fabric. The individual goals are (a) to examine the fabric’s color fastness to washing and (b) to investigate whether the surface modification of the fabric adversely affects its functionality. Results show that it is possible to change the color and pattern of metal fiber-containing fabric by digital printing easily, whereas the associated decrease of porosity causes an increase of this special fabric functionality. The electromagnetic shielding effectiveness of the fabric after printing is around 33 dB for frequency 1.5 GHz. However, washing has a negative effect, causing both the electromagnetic shielding ability decrease (to 27 dB for frequency 1.5 GHz after 20 washing and drying cycles) and color fading (the color fastness grade is around 1–2 after 20 washing and drying cycles). Furthermore, the basic transport properties of printed electrically conductive fabric are compared with those of fabric made from traditional material and positive results are found. The incidence of pilling after washing is also evaluated, whereas the first pills are observed after the eighth washing and drying cycle. Finally, clothing prototypes that could be prepared from printed fabric are presented.


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940020 ◽  
Author(s):  
Ming Gong ◽  
Shou-Guang Sun ◽  
Lin Sun ◽  
Ai-Qin Tian ◽  
Qiang Li

Computer Simulation Technology EM and Computer Simulation Technology Microwave Studio electromagnetic simulation software were used to simulate the carbon fiber composite materials with a new type of wide frequency electromagnetic shielding coating. DC magnetic field, low-frequency electromagnetic fields, and mid-high frequency electromagnetic shielding effectiveness analysis model were established in order to study the influence of permeability, conductivity, coating thickness and other parameters in the typical frequency range research on the shielding effectiveness. The results show that the composite coating material with reasonable design can effectively enhance the electromagnetic shielding performance of carbon fiber composite materials in the DC [Formula: see text]18 GHz frequency range.


2019 ◽  
Vol 50 (6) ◽  
pp. 830-846
Author(s):  
Yalan Yang ◽  
Jianping Wang ◽  
Zhe Liu ◽  
Zhujun Wang

Electromagnetic radiation is becoming increasingly serious around our living environment, which seriously endangers people's health and interferes with the operation of electronic equipment. The research and development of anti-electromagnetic radiation fabric have drawn more and more attention. However, the influencing rules and mechanisms of conductive fiber content, fabric tightness, warp–weft density, conductive yarn arrangement, weave type, and electromagnetic wave frequency on fabric electromagnetic shielding effectiveness have not been clarified. Therefore, in this study, a series of fabrics containing stainless steel fibers were produced. Meanwhile, the influencing rules of various factors on electromagnetic shielding effectiveness and the quantitative relationship between some factors and electromagnetic shielding effectiveness were discussed. The results showed that all factors had different degrees of influence on electromagnetic shielding effectiveness, and the relationship between electromagnetic shielding effectiveness and electromagnetic wave frequency could be approximately expressed as: [Formula: see text]. At the same time, the influencing mechanisms of various factors on electromagnetic shielding effectiveness were analyzed in combination with fabric microstructure and macrostructure, the intrinsic parameters of the fabric and the electromagnetic shielding effectiveness mechanism. The results are expected to provide a reference for the establishment of electromagnetic shielding fabric model and enterprise production.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 484
Author(s):  
Sundaramoorthy Palanisamy ◽  
Veronika Tunakova ◽  
Shi Hu ◽  
Tao Yang ◽  
Dana Kremenakova ◽  
...  

Electromagnetic (EM) radiation is everywhere in this world and galaxy in different forms and levels. In some cases, human beings need to protect themselves from electromagnetic radiations and the same thing is also recommended for electronic devices as well. Lots of studies are there on the shielding of electromagnetic radiation interference using metals, polymers, and minerals. For protecting the human being, textile structures are playing the main role. In the textile material structure itself many types are there; each one is having its unique geometrical shape and design. In this work, the copper/nickel-coated ultrathin nonwoven fabric is prepared like a strip. The 3, 6, and 9 mm thick strips are prepared and laid at different gaps, angles, and layered to study the effect of factors on EM shielding effectiveness as per ASTM D4935-10 standard. The design of experiment has been done to analyze the three factors and three levels of the strip properties having an influence on electromagnetic shielding results. From the findings of the design of experiment (DoE) screening design, the factors are the thickness of the strips, the gap between the strips, and the strips laid angle having a statistically significant effect on electromagnetic shielding effectiveness.


2019 ◽  
Vol 2019 ◽  
pp. 32-35
Author(s):  
Özlem KAYACAN ◽  
Neza BAKIR ◽  
Barkın TRAŞ

The increase in daily usage of electrical and electronic tools simplify the lives of human beings, on the other hand, they also create an enormous electromagnetic pollution. In industrial applications, electromagnetic shielding materials are used to prevent these electromagnetic signals. The studies on human health against the electromagnetic pollution was determined that the widely usage of these electronic devices increases the risk of cancer. Especially in low frequency fields, the most consistent evidence is obtained in childhood leukemia [1]. In order to reduce the damage of these electromagnetic waves, researches have been still made on the electromagnetic shielding effectiveness. Electrically conductive technical textiles are also investigated for this aim. Different textile structures such as knitted, woven, composite or coated textiles etc and also different conductive yarns are produced to prevent these harmful waves [2-5].In this study, it is aimed to investigate the electromagnetic shielding performances of conductive knitted fabrics. In order to search the efficiency of these fabrics, single jersey and interlock knitted structures are produced. By using these fabrics, two different types of double-layered fabric structures are formed and the shielding effectiveness of these structures are investigated experimentally [6}.


2020 ◽  
pp. 004051752096828
Author(s):  
Lulu Zhong ◽  
Rufang Yu ◽  
Xinghua Hong

Carbon-based electromagnetic shielding materials are reviewed in terms of their performance, type, and preparation. They include film, composite, foam, and fabric with particular attention on their frequency selectivity ascribed to the periodic structure. The SE/t, referring to shielding effectiveness per unit thickness (dB/mm), and SSE, referring to shielding effectiveness per unit density (dB·cm3/g), are summarized. The main conclusions of this work are as follows: (1) large area film shows higher SE/t, in which carbon nanotube (CNT) film is endowed with the most attractive value (19,500 dB/mm); materials containing CNTs achieve higher shielding efficiency, ascribe to a high specific surface area, have a greater length–diameter ratio, and a one-dimensional continuous-oriented structure; (2) notably, frequency selectivity based on varied period structures has been widely studied; the method includes multilayer structure/printing/cutting/backfilling and, especially, woven fabric; (3) favorable shielding effectiveness is attributed to the shielding material's intrinsic electrical conductivity and structural integrity. Based on these developments, this paper aims to provide some valuable data, highlight the important research direction, and advance the development of carbon-based electromagnetic shielding materials.


2014 ◽  
Vol 21 (1) ◽  
pp. 129-135 ◽  
Author(s):  
Devrim Soyaslan ◽  
Özer Göktepe ◽  
Selçuk Çömlekçi

AbstractIn this study, it was aimed to investigate the effects of fabric lamination angle and fabric ply number on electromagnetic shielding effectiveness (EMSE) of weft knitted fabric-reinforced polypropylene composites. Knitted fabric-reinforced composites are composed of aramid yarn, polypropylene yarn, and copper wire. Polypropylene is the matrix phase and the aramid yarn and copper wires are the reinforcement phase of the composite materials. It was achieved to form 1.5 to 3 mm thickness composites. The composites have nearly 20–50 dB electromagnetic shielding values. To form the knitted fabrics, 7G semiautomatic flat knitting machine was used. The composites were formed by a laboratory-type hot press. EMSE of composites were tested by using ASTM D 4935 coaxial test fixture in 27–3000 MHz frequency band. Lamination angle and ply number parameters were examined related to EMSE of structures. For this study, three different structures were knitted and named as plain knit, 1×1 rib knit, and half cardigan knit. To determine the effect of lamination angle of composites on electromagnetic shielding performance, the composites were produced in two different lamination angles as 0°/90°/0°/90° and 0°/45°/0°/45°. To determine the effect of fabric ply number of composites on electromagnetic shielding performance, the composites were produced in two and four plies. It was observed that the fabric ply number and lamination angle does not affect the EMSE of composite materials very much. It was determined that weft knitted reinforced composite structures have appropriate and high EMSE values for electromagnetic applications. This knitted fabric-reinforced polypropylene composites are flexible and suitable for other industrial applications as civil engineering, aerospace, etc.


2021 ◽  
Vol 5 (7) ◽  
pp. 173
Author(s):  
Bluma Guenther Soares ◽  
Guilherme M. O. Barra ◽  
Tamara Indrusiak

The development of sophisticated telecommunication equipment and other electro-electronic devices resulted in a kind of electromagnetic pollution that affects the performance of other equipment as well as the health of human beings. Intrinsically conducting polymers (ICP), mainly polyaniline and polypyrrole, have been considered as promising candidates for applications in efficient electromagnetic interference shielding (EMI) due to their ease of preparation, light weight, good conductivity and corrosion resistance. One of the important advantages of these materials is the capability to interact with the EM radiation through both absorption and reflection mechanisms thus enlarging the field of application. In this context, this review article describes a recent overview of the existing methods to produce intrinsically conducting polymers and their blends for electromagnetic shielding application. Additionally, it highlights the relationship between preparation methods reported in the literature with the structure and properties, such as electrical conductivity, electromagnetic shielding effectiveness (EMI SE), complex permittivity and permeability of these materials. Furthermore, a brief theory related to the electromagnetic mechanism and techniques for measuring the microwave absorbing properties are also discussed.


Sign in / Sign up

Export Citation Format

Share Document