scholarly journals Toxicity and Benefits of Urban Stabilized Sludge Intended for Agriculture Use

2020 ◽  
Vol 71 (7) ◽  
pp. 365-378
Author(s):  
Ion-Viorel Patroescu ◽  
Stefania Gheorghe ◽  
Ioana Alexandra Ionescu ◽  
Ionut Cristea ◽  
Irina Eugenia Lucaciu ◽  
...  

Sludge reuse is one of the main challenges of waste management and an action with environmentally consequences that must be kept under control. The progress of civilization leaded to the globally increase of sludge production. WWTPs treatment technologies, sludge disposal/recovery and also quality control and toxicological involvements became parts of strategical actions at international level. The main disposal strategies for sludge management include agriculture or landscaping purposes, or final disposal. The accepted international policy is sludge application as organic fertilizer in agriculture. In this context, the research paper presents laboratory data used in decisional actions for the sludge land disposal. The study covers physical and chemical characterization of sludge resulted from Focsani WWTP, agriculture soil collected from around of Focsani WWTP and their leachates in compliance with national norms. In addition, the toxic effects on soil organisms (plants) were evaluated. Generally, soil and sludge quality meet the normed criteria for minimizing the potential impact on the environment. The leachate experiments showed the non-hazardous character on the soil properties of groundwater, the predicted impact being insignificant for the tested sludge / soil chemical composition. Ecotoxicological assessment of stabilized sludge showed inhibitory effects in the range of 25% to 100% on seed germination and root growth of plants Sorghum sacharatum, Sinapis alba and Lepidium sativum. In the range of 1% or 5% no significant inhibitory effect of sludge on plants growth was observed. Sorghum sacharatum showed the best growth, but there were no relevant differences between species. A saftey dose of 5% sludge mixed with agriculture soil (250 tonnes per hectare) was established. A monitoring program of sludge / soil quality and also ecotoxic evaluation was recomanded for the saftey of crops growth and health of living organisms including humans.

2021 ◽  
Author(s):  
Omid Moradi ◽  
Samira Mhdavi ◽  
Sajjad Sedaghat

Abstract Today, environmental pollutants pose a threat to human societies and all living organisms, which is why they have attracted the attention of environmental researchers. In this study, in order to remove pharmaceutical contaminants Naproxen and Amoxicillin from aqueous media with SiO2 nanoparticles based on Agar and Chitosan was investigated. The study of structural properties, physical and chemical characterization of synthesized nanocomposite was investigated by FTIR, XRD, TEM, FE-SEM, DLS and EDX analyzes. In addition, the role of parameters affecting the removal of pharmaceutical contaminants such as solution pH, contact time, contaminant concentration and temperature were studied. Nanocomposites prepared from Agar and Chitosan showed good performance in absorbing naproxen and amoxicillin. According to the studies performed to remove naproxen, the max adsorption efficiency was obtained at a concentration of 20 mg/l with an absorbent dose of 0.05 g and a pH of 8 and at an optimum temperature of 25 °C and 99% in 15 min. Also, for amoxicillin with nanocomposite prepared with an initial concentration of 20 mg/l and an adsorbent dose of 0.05 g, a time of 10 min, a temperature of 25 °C and a pH of 8, the max removal efficiency of 91.15% was obtained.


2021 ◽  
Vol 18 (4) ◽  
pp. 755-761
Author(s):  
Dinh Hoang Dang Khoa ◽  
Pham Thi Thu Hang ◽  
Pham Thi Hoanh ◽  
Le Phi Nga

Sai Gon river is the important source for water supply in Ho Chi Minh City. However, its water quality is degrading gradually due to rapid population growth, increasing of urbanization and industrialization. The river is continuously loaded with xenobiotics released by anthropogenic activities. Among pollutants, heavy metals are considered as the most toxic elements to aquatic living organisms and human health. The aim of this study is to assess the sensibility of freshwater microalgae Scenedesmus and water flea Daphnia carinata, two fresh water species from Viet Nam to lead (Pb). After physical and chemical characterization, field water samples from the upstream of Sai Gon River was used as dilution water in toxicity tests. With water flea D. carinata, the EC50 value of 48h immobilization experiment was 121.64 µg/L for Pb. Growth inhibition of the algae cells was determined following exposure for 96 h, and EC50 values of Pb was 14,767.9 µg/L. The results showed that Pb was highly toxic to D. carinata, and harmful to freshwater algae Scenedesmus. Based on the observed high sensitivity with Pb, D. carinata is a potential bioindicator for the assessment of Pb pollution in Sai Gon river. While lead-tolerance algae Scenedesmus calls for further investigation on metal uptake capacity and utilization in Pb contaminated water treatment


Author(s):  
Kouakou Yao Salomon ◽  
N’doufou Gnosseith Huberson Claver ◽  
Akpo Kouakou Sylvain

Endocrine disrupting compounds (EDCs), including Alkylphenols and their ethoxylates, precisely Nonylphenol and its ethoxylates, are organic molecules that are of greatest current concern because of their ability to have a toxic or an inhibitory effect on living organisms by their presence or accumulation in environment such as water, sediments, soils and atmosphere. They are used in the production of surfactants, industrial formulations, pharmaceuticals, personal care products etc... The primary objective of this article is to review the literature concerning classification of Nonylphenol and its ethoxylates based on physical and chemical characteristics and technical feasibility of their usages. It also involved different ways of their introduction into environment, analytical methods (HPLC, GC-MS, GC-MS-TOF) for their environmental detection and quantification, and finally methods for their removal. Technologies proposed for nonylphenol and its ethoxylates degradation includes biodegradation, physical processes, conventional and non-conventional adsorption-oriented processes and photodegradation processes including photocatalytic oxidation which have a potential to reach complete mineralization.


2020 ◽  
Vol 17 (2) ◽  
pp. 88-100 ◽  
Author(s):  
Sundos Suleman Ismail Abdalla ◽  
Haliza Katas ◽  
Fazren Azmi ◽  
Mohd Fauzi Mh Busra

Fast progress in nanoscience and nanotechnology has contributed to the way in which people diagnose, combat, and overcome various diseases differently from the conventional methods. Metal nanoparticles, mainly silver and gold nanoparticles (AgNPs and AuNPs, respectively), are currently developed for many applications in the medical and pharmaceutical area including as antibacterial, antibiofilm as well as anti-leshmanial agents, drug delivery systems, diagnostics tools, as well as being included in personal care products and cosmetics. In this review, the preparation of AgNPs and AuNPs using different methods is discussed, particularly the green or bio- synthesis method as well as common methods used for their physical and chemical characterization. In addition, the mechanisms of the antimicrobial and anti-biofilm activity of AgNPs and AuNPs are discussed, along with the toxicity of both nanoparticles. The review will provide insight into the potential of biosynthesized AgNPs and AuNPs as antimicrobial nanomaterial agents for future use.


1969 ◽  
Vol 244 (15) ◽  
pp. 4128-4135
Author(s):  
R T Acton ◽  
J C Bennett ◽  
E E Evans ◽  
R E Schrohenloher

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nur’ Adilah Abdul Nasir ◽  
Ameen Gabr Ahmed Alshaghdari ◽  
Mohd Usman Mohd Junaidi ◽  
Nur Awanis Hashim ◽  
Mohamad Fairus Rabuni ◽  
...  

Abstract Efficient purification technology is crucial to fully utilize hydrogen (H2) as the next generation fuel source. Polyimide (PI) membranes have been intensively applied for H2 purification but its current separation performance of neat PI membranes is insufficient to fulfill industrial demand. This study employs blending and crosslinking modification simultaneously to enhance the separation efficiency of a membrane. Polyethersulfone (PES) and Co-PI (P84) blend asymmetric membranes have been prepared via dry–wet phase inversion with three different ratios. Pure H2 and carbon dioxide (CO2) gas permeation are conducted on the polymer blends to find the best formulation for membrane composition for effective H2 purification. Next, the membrane with the best blending ratio is chemically modified using 1,3-diaminopropane (PDA) with variable reaction time. Physical and chemical characterization of all membranes was evaluated using field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR). Upon 15 min modification, the polymer membrane achieved an improvement on H2/CO2 selectivity by 88.9%. Moreover, similar membrane has demonstrated the best performance as it has surpassed Robeson’s upper bound curve for H2/CO2 gas pair performance. Therefore, this finding is significant towards the development of H2-selective membranes with improved performance.


Author(s):  
Roberto Altieri ◽  
Maurizia Seggiani ◽  
Alessandro Esposito ◽  
Patrizia Cinelli ◽  
Vitale Stanzione

AbstractTwo different raw hydrolyzed collagens (HCs), by-products of the Tannery industry, were investigated in blends with a bioplastic, as poly(butylene succinate-co-adipate) (PBSA), for the production of thermoplastic items for possible applications in agriculture. Chemical characterization of selected PBSA/HC blends and phytotoxicity assays on garden cress seeds (Lepidium sativum L.), used as spy species, were carried out; in addition, biodegradation and disintegration of specimens were assessed under controlled composting conditions at different temperature (58 and 25 °C). Although one of the HC investigated released sodium chloride in the aqueous extract, all PBSA/HC blends, up to 20 wt.% HC, resulted no-phytotoxic and showed considerable amounts of macro- and micro- nutrients for plants (mainly nitrogen). Regardless the amount added, HCs enhanced the biodegradation rate of PBSA/HC blends in compost at 58 °C compared to pure PBSA; lowering the temperature at 25 °C, as expected, biodegradation rate slightly lowered using the same compost. Most disintegration tests, performed on dog bone samples, corroborated the results of the biodegradation tests, thus suggesting that plastic mixtures could reasonably end their life cycle in a composting facility without decreasing the quality and the safety of the resulting compost. The outcomes achieved encourage the use of raw collagen hydrolysates from tanning industry in the production of PBSA-based thermoplastic blends to produce compostable items (mulching films and/or plant pots) for more sustainable uses in agriculture and/or plant nurseries. In addition, the use of these low-cost by-products can lower the cost of final product and give it fertilizing properties for plants given the presence of organic nitrogen in the hydrolysates.


Environments ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 49
Author(s):  
Markéta Šourková ◽  
Dana Adamcová ◽  
Jan Winkler ◽  
Magdalena Daria Vaverková

Illegal dumps and landfills with disposed of tires are a fact of today, which should not be neglected as they represent a great ecological burden for the environment, affect the surrounding nature and disturb the landscape. This research was focused on testing the phytotoxicity of aqueous leachates from the fractions of tires in two sets of experiments—to simulate laboratory conditions (tire leaching in distilled water) and natural conditions (tire leaching in water from a recipient) using the Phytotoxkit testing kit (kit for the establishment of inhibition/stimulation effect on the root development) and the watercress test of phytotoxicity (biological method for the assessment of leachate phytotoxicity). Plants whose seeds were selected for the test were watercress (Lepidium sativum L.) and white mustard (Sinapis alba L.). The aqueous leachate was tested for 38 weeks. During the experiment, physical and chemical parameters were measured at intervals of 14 days by the testing instrument HACH TEST KIT: electric conductivity (EC), amount of dissolved oxygen (LDO) and pH. Results of root growth inhibition (IR) on the seeds of Lepidium sativum L. and Sinapis alba L. exhibited values ranging from 11.73% to 47.74% in the tested samples. Results of germination index (GI) on the seeds of Lepidium sativum L. exhibited values below 66% in the tested samples, which indicated the leachate phytotoxicity. In spite of the fact that similar studies are tackling the acute toxicity of leachates from tires (particularly to algae, embryos and animals), this research brings complementary information in testing the acute phytotoxicity of tire leachates to higher plants.


Sign in / Sign up

Export Citation Format

Share Document