scholarly journals Physiological and metabolic alterations in basil (Ocimum basilicum L.) varieties under distinct soil water levels

Author(s):  
Larissa Santos Castro ◽  
◽  
Daniel Andres Villegas Hurtado ◽  
Adriene Aparecida Silva ◽  
Danubia Aparecida Costa Nobre ◽  
...  

Basil (Ocimum basilicum L.) is a medicinal species used in several areas, such as food, medicines and cosmetics, and the understanding of its physiological behavior under environmental conditions is of paramount importance for the improvement of cultivation methods. The objective of this study was to evaluate the influence of different water availability under physiological, biochemical and metabolic characteristics, in three distinct genotypes: 'Alfavaca basilicão', 'Gennaro de menta' and 'Grecco à palla', during two different phenological stages (vegetative and reproductive). It was found that the water deficit promotes physiological changes to tolerate water stress, and the studied genotypes have different routes to achieve this physiological tolerance, which culminates in a distinct accumulation of metabolites in plants, and can be considered interesting if the final product is the production of essential oils.

2017 ◽  
Vol 9 (11) ◽  
pp. 283 ◽  
Author(s):  
Renata V. Menezes ◽  
André D. Azevedo Neto ◽  
Hans R. Gheyi ◽  
Alide M. W. Cova ◽  
Hewsley H. B. Silva

Basil (Ocimum basilicum L.) is a medicinal species of Lamiaceae family, popularly known for its multiple benefits and high levels of volatile compounds. The species is considered to be one of the most essential oil producing plants. Also cultivated in Brazil as a condiment plant in home gardens. The objective of this study was to evaluate the effect of salinity on the growth of basil in nutrient solution of Furlani and to identify variables related to the salinity tolerance in this species. The first assay was performed with variation of five saline levels (0 - control, 20, 40, 60 and 80 mM NaCl). In the second assay six genotypes were evaluated in two salinity levels 0 and 80 mM NaCl. The height, stem diameter, number of leaves, dry mass and inorganic solutes in different organs, photosynthetic pigments, absolute membrane integrity and relative water content were evaluated. All biometric variables in basil were significantly reduced by salinity. Dry matter yield and percentage of membrane integrity were the variables that best discriminated the characteristics of salinity tolerance among the studied basil genotypes. Basil genotypes showed a differentiated tolerance among the genotypes, the ‘Toscano folha de alface’ being considered as the most tolerant and ‘Gennaro de menta’ as the most sensitive, among the species studied.


2018 ◽  
Vol 22 (5) ◽  
pp. 2795-2809 ◽  
Author(s):  
Hafsa Ahmed Munia ◽  
Joseph H. A. Guillaume ◽  
Naho Mirumachi ◽  
Yoshihide Wada ◽  
Matti Kummu

Abstract. Countries sharing river basins are often dependent upon water originating outside their boundaries; meaning that without that upstream water, water scarcity may occur with flow-on implications for water use and management. We develop a formalisation of this concept drawing on ideas about the transition between regimes from resilience literature, using water stress and water shortage as indicators of water scarcity. In our analytical framework, dependency occurs if water from upstream is needed to avoid scarcity. This can be diagnosed by comparing different types of water availability on which a sub-basin relies, in particular local runoff and upstream inflows. At the same time, possible upstream water withdrawals reduce available water downstream, influencing the latter water availability. By developing a framework of scarcity and dependency, we contribute to the understanding of transitions between system regimes. We apply our analytical framework to global transboundary river basins at the scale of sub-basin areas (SBAs). Our results show that 1175 million people live under water stress (42 % of the total transboundary population). Surprisingly, the majority (1150 million) of these currently suffer from stress only due to their own excessive water use and possible water from upstream does not have impact on the stress status – i.e. they are not yet dependent on upstream water to avoid stress – but could still impact on the intensity of the stress. At the same time, 386 million people (14 %) live in SBAs that can avoid stress owing to available water from upstream and have thus upstream dependency. In the case of water shortage, 306 million people (11 %) live in SBAs dependent on upstream water to avoid possible shortage. The identification of transitions between system regimes sheds light on how SBAs may be affected in the future, potentially contributing to further refined analysis of inter- and intrabasin hydro-political power relations and strategic planning of management practices in transboundary basins.


2011 ◽  
Vol 15 (12) ◽  
pp. 3785-3808 ◽  
Author(s):  
Y. Wada ◽  
L. P. H. van Beek ◽  
M. F. P. Bierkens

Abstract. During the past decades, human water use has more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water stress considering not only climate variability but also growing water demand, desalinated water use and non-renewable groundwater abstraction over the period 1960–2001 at a spatial resolution of 0.5°. Agricultural water demand is estimated based on past extents of irrigated areas and livestock densities. We approximate past economic development based on GDP, energy and household consumption and electricity production, which are subsequently used together with population numbers to estimate industrial and domestic water demand. Climate variability is expressed by simulated blue water availability defined by freshwater in rivers, lakes, wetlands and reservoirs by means of the global hydrological model PCR-GLOBWB. We thus define blue water stress by comparing blue water availability with corresponding net total blue water demand by means of the commonly used, Water Scarcity Index. The results show a drastic increase in the global population living under water-stressed conditions (i.e. moderate to high water stress) due to growing water demand, primarily for irrigation, which has more than doubled from 1708/818 to 3708/1832 km3 yr−1 (gross/net) over the period 1960–2000. We estimate that 800 million people or 27% of the global population were living under water-stressed conditions for 1960. This number is eventually increased to 2.6 billion or 43% for 2000. Our results indicate that increased water demand is a decisive factor for heightened water stress in various regions such as India and North China, enhancing the intensity of water stress up to 200%, while climate variability is often a main determinant of extreme events. However, our results also suggest that in several emerging and developing economies (e.g. India, Turkey, Romania and Cuba) some of past extreme events were anthropogenically driven due to increased water demand rather than being climate-induced.


OENO One ◽  
2013 ◽  
Vol 47 (4) ◽  
pp. 269 ◽  
Author(s):  
Edoardo Antonio Costantino Costantini ◽  
Alessandro Agnelli ◽  
Pierluigi Bucelli ◽  
Aldo Ciambotti ◽  
Valentina Dell’Oro ◽  
...  

<p style="text-align: justify;"><strong>Aim</strong>: To evaluate the relationship between carbon isotope ratio (δ<sup>13</sup>C) and wine grape viticultural and oenological performance in organic farming.</p><p style="text-align: justify;"><strong>Methods and results</strong>: The study was carried out for four years in the Chianti Classico wine production district (Central Italy), on five non irrigated vineyards conducted in organic farming. The reference variety was Sangiovese. Eleven sites were chosen for vine monitoring and grape sampling. The performance parameters were alcohol and must sugar content, sugar accumulation rate, mean berry weight, and extractable polyphenols. δ<sup>13</sup>C, stem water potential, and soil water availability were also monitored. Finally, soil nitrogen as well as yeast available nitrogen in the must were measured. δ<sup>13</sup>C was directly related to stem water potential and soil water deficit, and indicated a range of water stress conditions from none and moderate to strong. However, its relationship with viticultural and oenological results was contrary to expectation, that is, performance linearly increased along with soil moisture. On the other hand, the worst performance was obtained where both water and nitrogen were more limiting.</p><p style="text-align: justify;"><strong>Conclusions</strong>: The unexpected relationship between δ<sup>13</sup>C and Sangiovese performance was caused by low nitrogen availability. The studied sites all had low-fertility soils with poor or very poor nitrogen content. Therefore, in the plots where soil humidity was relatively higher, nitrogen plant uptake was favoured, and Sangiovese performance improved. Macronutrient being the main limiting factor, the performance was not lower in the plots where soil water availability was relatively larger. Therefore, the best viticultural result was obtained with no water stress conditions, at low rather than at intermediate δ<sup>13</sup>C values.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: Water nutrition is crucial for wine grape performance. δ<sup>13</sup>C is a method used to assess vine water status during the growing season and to estimate vine performance. A good performance is expected at moderate stress and intermediate δ<sup>13</sup>C values. A better knowledge of the interaction between water and nutrient scarcity is needed, as it can affect the use of δ<sup>13</sup>C to predict vine performance.</p>


2019 ◽  
Vol 11 (4) ◽  
pp. 197
Author(s):  
Diogo Mendes da Silva ◽  
Suzan Kelly Vilela Bertolucci ◽  
Smail Aazza ◽  
Alexandre Alves de Carvalho ◽  
Simony Carvalho Mendonça ◽  
...  

The purpose of the present work was to evaluate the vegetative growth of Mentha piperita L. cultivated under different water availability, as well its influence in content, chemical composition and in vitro antioxidant activity of its essential oil. Plants were propagated by mother plants microcutting and scions were transplanted to 5 L pots with soil and cattle manure. Afterward, were kept at field capacity for 30 days and under treatment for 40 days. It was treated with different levels of water deficit treatments: (T1): 100 of field capacity (FC); (T2): 80 of FC; (T3): 60 of FC; (T4) 40 of FC with 5 blocks. Vegetative growth was evaluated by dry matter contents of all part of plants and by root/aerial rate. The essential oil of the leaves was extracted by hydrodistillation, analyzed by GC-FID and GC-MS and in vitro antioxidant potential was evaluated. A significant decrease in the dry matter of leaves and stems accompanied with a decrease in the roots dry matter was observed with an increase in the water stress. Quantitative chemical differences were observed in the chemical composition of the essential oil, according water availability. Total antioxidant activity showed a gradual increase as water stress progressed.


2008 ◽  
Vol 12 (5) ◽  
pp. 1175-1187 ◽  
Author(s):  
D. I. Quevedo ◽  
F. Francés

Abstract. Plant ecosystems in arid and semiarid climates show high complexity, since they depend on water availability to carry out their vital processes. In these climates, water stress is the main factor controlling vegetation development and its dynamic evolution. The available water-soil content results from the water balance in the system, where the key issues are the soil, the vegetation and the atmosphere. However, it is the vegetation, which modulates, to a great extent, the water fluxes and the feedback mechanisms between soil and atmosphere. Thus, soil moisture content is most relevant for plant growth maintenance and final water balance assessment. A conceptual dynamic vegetation-soil model (called HORAS) for arid and semi-arid zones has been developed. This conceptual model, based on a series of connected tanks, represents in a way suitable for a Mediterranean climate, the vegetation response to soil moisture fluctuations and the actual leaf biomass influence on soil water availability and evapotranspiration. Two tanks were considered using at each of them the water balance and the appropriate dynamic equation for all considered fluxes. The first one corresponds to the interception process, whereas the second one models the evolution of moisture by the upper soil. The model parameters were based on soil and vegetation properties, but reduced their numbers. Simulations for dominant species, Quercus coccifera L., were carried out to calibrate and validate the model. Our results show that HORAS succeeded in representing the vegetation dynamics and, on the one hand, reflects how following a fire this monoculture stabilizes after 9 years. On the other hand, the model shows the adaptation of the vegetation to the variability of climatic and soil conditions, demonstrating that in the presence or shortage of water, the vegetation regulates its leaf biomass as well as its rate of transpiration in an attempt to minimize total water stress.


2007 ◽  
Vol 55 (5) ◽  
pp. 568 ◽  
Author(s):  
M. A. Whalen ◽  
D. A. Mackay

The relationship between geographic variation in extrafloral nectary size and climatic variation was assessed in three taxa within Adriana (Euphorbiaceae). In each taxon, there was a significant association between gland size and moisture-related climatic variables. A glasshouse experiment was conducted to examine the effect of water stress on nectary longevity, and it was found that the secretory activity of nectaries declined more rapidly on drought-stressed plants than on watered plants.


Sign in / Sign up

Export Citation Format

Share Document