scholarly journals Detailed Review of Ball End Magnetorheological Fluid Finishing Process

2020 ◽  
Vol 15 ◽  

For precision finishing of various newly and difficult of finish materials like optical glasses, metals, 3D-printed workpieces etc. Ball End Magnetorheological Finishing (BEMRF) finishing processes has been recently developed. This method utilizes a paste like fluid consisting of a base fluid which can be either water or oil, both magnetic and non-magnetic particles and stabilizing agents if necessary. Rheological behavior of this mixture of magnetorheological (MR) fluid with abrasives changes under the influence of magnetic field which in turn regulates the finishing forces during finishing processes. Present study critically reviews the BEMRF process used for achieving nano-level finishing variety of materials like mild steel, EN-31, copper etc. and the factors influenced this process so far which led to further advancements in this method.

Author(s):  
Anand Sharma ◽  
M.S. Niranjan

Magnetorheological Finishing (MRF) is one of the precision finishing processes and recently commercialized method for finishing of various materials like optical glasses, metals, non-metals etc. This method utilizes a suspension consisting of a fluid carrier which can be water or oil, both magnetic and non-magnetic particles and stabilizing agents. Rheological behavior of this mixture of magnetorheological (MR) fluid with abrasives changes under the influence of magnetic field which in turn regulates the finishing forces during finishing processes. Present study critically reviews the MRF process used for achieving nano-level finishing of soft materials and the advancements made in this process


Author(s):  
Huanwu Sun ◽  
Shichun Yang

The fluid magnetic abrasive (FMA) is a new type of precision finishing abrasives, which is typically prepared by dispersing the magnetic particles, nonmagnetic abrasives, surfactants in a non-magnetizable carrier liquid. As the functional particles, the characteristics of magnetic particles have a great impact on the properties of FMA. In our experiment, the micron-sized carbonyl-iron (CI) particles (typical size: 3 μm–5 μm) are found to be ideally suited for the preparation of FMA. In this paper, the selections of micron-sized carbonyl-iron particles suitable for the FMA, the preparation techniques, the finishing mechanism and finishing process are presented. Some key parameters of FMA that may affect the finishing efficiency and the final surface roughness are analyzed theoretically. The experimental results are discussed as well in this paper.


2019 ◽  
Vol 31 (3) ◽  
pp. 377-388 ◽  
Author(s):  
AK Bastola ◽  
M Paudel ◽  
L Li

This article presents the development of line-patterned magnetorheological elastomers via 3D printing and their magnetorheological characterization. Herein, we consider five different patterns of magnetorheological fluid filaments that are printed and encapsulated within the elastomer matrix. The 3D-printed magnetorheological elastomers could represent the conventional isotropic and anisotropic magnetorheological elastomers. First, the effect of patterning the magnetorheological fluid filaments and the effect of change in the direction of the magnetic field is studied for all five patterns. Thereafter, the dynamic properties of 3D-printed magnetorheological elastomers under uniaxial deformation are presented. Magnetorheological effect shown by 3D-printed magnetorheological elastomers was found to be depended on the printed patterns as well as the direction of the applied magnetic field. This result showed that the 3D printing method has the potential to produce anisotropic magnetorheological elastomers or unique configuration of magnetic particles within the elastomer matrix. The dynamic testing showed that the storage modulus of 3D-printed magnetorheological elastomers is increased with increasing frequency and decreased with increasing strain amplitude, which signifies that the 3D-printed hybrid magnetorheological elastomers are also viscoelastic materials and the properties are magnetic field dependent as that of current magnetorheological elastomers.


Author(s):  
Partap Singh Samra ◽  
Sehijpal Singh ◽  
Lakhvir Singh

Wide application of hard and brittle advanced ceramics, glasses and semiconductors in Mechanical, Optical and Electronic industry has led to the development of new ultra-precision finishing processes. With an increase in the applications of these materials, the need of finishing these materials has also become a great challenge. Dimensional and finish accuracies are the parameters that needs to be focused and improved with minimum time and cost. Another crucial parameter is the subsurface damages that are quiet common with these materials during finishing process.  New processes have been developed to overcome the drawbacks of the existing processes for Nano finishing. These processes can be classified as Conventional, Precision and Ultra-precision finishing based on the degree of dimensional accuracy and final surface finish. Both loose and bonded abrasives have been used for these processes. This paper deals with the study of some of the significant advances in ultra-precision finishing processes of hard and brittle materials.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Dana Ashkenazi ◽  
Alexandra Inberg ◽  
Yosi Shacham-Diamand ◽  
Adin Stern

Additive manufacturing (AM) revolutionary technologies open new opportunities and challenges. They allow low-cost manufacturing of parts with complex geometries and short time-to-market of products that can be exclusively customized. Additive manufactured parts often need post-printing surface modification. This study aims to review novel environmental-friendly surface finishing process of 3D-printed AlSi10Mg parts by electroless deposition of gold, silver, and gold–silver alloy (e.g., electrum) and to propose a full process methodology suitable for effective metallization. This deposition technique is simple and low cost method, allowing the metallization of both conductive and insulating materials. The AlSi10Mg parts were produced by the additive manufacturing laser powder bed fusion (AM-LPBF) process. Gold, silver, and their alloys were chosen as coatings due to their esthetic appearance, good corrosion resistance, and excellent electrical and thermal conductivity. The metals were deposited on 3D-printed disk-shaped specimens at 80 and 90 °C using a dedicated surface activation method where special functionalization of the printed AlSi10Mg was performed to assure a uniform catalytic surface yielding a good adhesion of the deposited metal to the substrate. Various methods were used to examine the coating quality, including light microscopy, optical profilometry, XRD, X-ray fluorescence, SEM–energy-dispersive spectroscopy (EDS), focused ion beam (FIB)-SEM, and XPS analyses. The results indicate that the developed coatings yield satisfactory quality, and the suggested surface finishing process can be used for many AM products and applications.


Author(s):  
Chuncheng Yang ◽  
Zhong Liu ◽  
Xiangyu Pei ◽  
Cuiling Jin ◽  
Mengchun Yu ◽  
...  

Magnetorheological fluids (MRFs) based on amorphous Fe-Si-B alloy magnetic particles were prepared. The influence of annealing treatment on stability and rheological property of MRFs was investigated. The saturation magnetization ( Ms) of amorphous Fe-Si-B particles after annealing at 550°C is 131.5 emu/g, which is higher than that of amorphous Fe-Si-B particles without annealing. Moreover, the stability of MRF with annealed amorphous Fe-Si-B particles is better than that of MRF without annealed amorphous Fe-Si-B particles. Stearic acid at 3 wt% was added to the MRF2 to enhance the fluid stability to greater than 90%. In addition, the rheological properties demonstrate that the prepared amorphous particle MRF shows relatively strong magnetic responsiveness, especially when the magnetic field strength reaches 365 kA/m. As the magnetic field intensified, the yield stress increased dramatically and followed the Herschel-Bulkley model.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
M. A. S. Mohamed

Addressed is the mechanism of finishing processes for a workpiece surface using hard abrasive tools such as grinding, abrasive paper, and filing. The mechanism is intended to monitor the gradual changes of the workpiece surface state roughness as the tool is applied for several strokes. Based on a number of common features, the present study simulates each rubbing stroke as a Markov process, and each set of several strokes as a Markov chain. In the simulating model, the discrete probabilistic properties of a specific tool abrasive surface can be expressed in terms of a corresponding Markov matrix operator. Thus, the tool action after one rubbing stroke is obtained via a matrix mapping from a given state roughness to a subsequent state roughness of the workpiece surface. Although the suggested model is capable to handle a comprehensive finishing mechanism, the study focuses on the simple case of zero feeding using a hard abrasive tool, in which the Markov matrix shrinks to a special triangular form. Main findings show that major aspects of the tool surface are transferred to the stepwise roughness state of the workpiece immediately after the first stroke. In addition, regardless of the initial roughness state of the workpiece surface, whether with flat or randomly distributed heights, the ultimate state roughness is unique and definitely features the theoretical case of a plain flat surface. However, this theoretical case is infeasible since it can only be reached after infinite number of strokes.


2021 ◽  
Author(s):  
Wenjuan YU ◽  
Decai Li ◽  
Sifang Niu

Abstract Kerosene based ferrofluid was put into a test tube to evaporate under different conditions. The weight losses of samples were measured and the evaporation rates were calculated. The predictions of evaporation rates were made based on Bolotov’s model. It was found that the magnetic particles prevent the base fluid from evaporation and lower volume fraction leaded to higher evaporation rate. Bolotov’s model had a certain deviation but still well responsive to different variables. It was also found that the magnetic field made a difference to the evaporation rate.


2021 ◽  
Vol MA2021-02 (57) ◽  
pp. 1858-1858
Author(s):  
Charuksha Walgama ◽  
Nicole Pollok ◽  
Lisa Boatner ◽  
Richard Crooks

Sign in / Sign up

Export Citation Format

Share Document