scholarly journals Changes of Mouse Gut Microbiota Diversity and Composition by Modulating Dietary Protein and Carbohydrate Contents: A Pilot Study

2016 ◽  
Vol 21 (1) ◽  
pp. 57-61 ◽  
Author(s):  
Eunjung Kim ◽  
Dan-Bi Kim ◽  
Jae-Yong Park
2015 ◽  
Vol 127 (9-10) ◽  
pp. 394-398 ◽  
Author(s):  
Marlene Remely ◽  
Berit Hippe ◽  
Isabella Geretschlaeger ◽  
Sonja Stegmayer ◽  
Ingrid Hoefinger ◽  
...  

Author(s):  
Mariusz Sikora ◽  
Norbert Kiss ◽  
Albert Stec ◽  
Joanna Giebultowicz ◽  
Emilia Samborowska ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyemin Jeong ◽  
In Young Kim ◽  
Eun-Kyung Bae ◽  
Chan Hong Jeon ◽  
Kwang-Sung Ahn ◽  
...  

AbstractAnkylosing spondylitis is a male-predominant disease and previous study revealed that estrogens have an anti-inflammatory effect on the spondyloarthritis (SpA) manifestations in zymosan-induced SKG mice. This study aimed to evaluate the effect of selective estrogen receptor modulator (SERM) lasofoxifene (Laso) on disease activity of SpA. Mice were randomized into zymosan-treated, zymosan + 17β-estradiol (E2)-treated, and zymosan + Laso-treated groups. Arthritis was assessed by 18F-fluorodeoxyglucose (18F-FDG) small-animal positron emission tomography/computed tomography and bone mineral density (BMD) was measured. Fecal samples were collected and 16S ribosomal RNA gene sequencing was used to determine gut microbiota differences. Both zymosan + E2-treated mice and zymosan + Laso-treated mice showed lower arthritis clinical scores and lower 18F-FDG uptake than zymosan-treated mice. BMD was significantly higher in zymosan + E2-treated mice and zymosan + Laso-treated mice than zymosan-treated mice, respectively. Fecal calprotectin levels were significantly elevated at 8 weeks after zymosan injection in zymosan-treated mice, but it was not significantly changed in zymosan + E2-treated mice and zymosan + Laso-treated mice. Gut microbiota diversity of zymosan-treated mice was significantly different from zymosan + E2-treated mice and zymosan + Laso-treated mice, respectively. There was no significant difference in gut microbiota diversity between zymosan + E2-treated mice and zymosan + Laso -treated mice. Laso inhibited joint inflammation and enhanced BMD in SKG mice, a model of SpA. Laso also affected the composition and biodiversity of gut microbiota. This study provides new knowledge regarding that selected SpA patients could benefit from SERM treatment.


2021 ◽  
Author(s):  
Rocío Mateo-Gallego ◽  
Isabel Moreno-Indias ◽  
Ana M. Bea ◽  
Lidia Sánchez-Alcoholado ◽  
Antonio J. Fumanal ◽  
...  

An alcohol-free beer including the substitution of regular carbohydrates for low doses of isomaltulose and maltodextrin within meals significantly impacts gut microbiota in diabetic subjects with overweight or obesity.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Angie Jefferson ◽  
Katie Adolphus

AbstractThe influence on health of the human gut microbiota is increasingly recognised, however wheat fibre, consumed frequently in Western diets has traditionally been considered inert with regard to gut microbiota composition and metabolic activity. We undertook a systematic review (PRISMA methodology) of human intervention studies examining the effects of intact cereal fibres on gut microbiota composition among healthy adults.(1) Studies published in the past 20 years were identified on PubMed and Cochrane electronic databases. Inclusion criteria were: healthy adult participants, at least one intact cereal fibre (or its sub-fraction) and measurement of faecal microbiota related outcomes. Out of forty studies meeting inclusion criteria, seventeen manipulated wheat fibre/bran or its key constituent arabinoxylans (AXOS), and ten used a whole diet approach with predominantly wheat fibre. Results from these twenty seven wheat fibre papers are presented here. Eight studies provided wheat bran/fibre (ranging from 5.7g-21g/day wheat fibre or 13g-28g/day wheat bran). Three reported significant effects on gut microbiota abundance and/or diversity (both at phyla and species level) and one showed no effect. Six reported significant increases in fermentation metabolites and one reported no significant change. Ten studies manipulated whole day fibre intake (predominantly wheat but also permitting some oats, rye and rice). Wholegrain intake ranged from 80g-150 g per day and fibre from 13.7g–40 g per day. Six found significant increases in bacterial diversity and/or abundance and five showed significant increases in fermentation metabolites. Two identified that response to high fibre intervention is dependent on baseline gut microbiota richness - those with limited richness exhibiting greater microbiota change over time in response to fibre increase. Two reported no significant effects. Nine studies utilised manipulation of AXOS (2.2g–18.8 g per day) with five demonstrating significant increases in target bacterial species and six significant increases in fermentation metabolites. One reported no significant effect to faecal metabolites. This review supports a role for the wheat fibre found in everyday foods (such as bran breakfast cereal of high fibre breads) promoting both microbiota diversity and abundance. While the healthy microbiome is yet to be defined, consumption of a single daily serving of wheat bran fibre appears sufficient to effect gut microbiota fermentation (with demonstrable effects arising from as low as 6g/day), and promote species diversity, with potential benefit to health.However exploration of stability over longer time frames (> 12 weeks) is now required.


2020 ◽  
Vol 11 (1) ◽  
pp. 124-133
Author(s):  
Hao Li ◽  
Xiaohui Zhang ◽  
Dengdeng Pan ◽  
Yongqiang Liu ◽  
Xuebing Yan ◽  
...  

AbstractObjectiveThe aim of this study is to investigate the dysbiosis characteristics of gut microbiota in patients with cerebral infarction (CI) and its clinical implications.MethodsStool samples were collected from 79 CI patients and 98 healthy controls and subjected to 16S rRNA sequencing to identify stool microbes. Altered compositions and functions of gut microbiota in CI and its correlation with clinical features were investigated. Random forest and receiver operating characteristic analysis were used to develop a diagnostic model.ResultsMicrobiota diversity and structure between CI patients and healthy controls were overall similar. However, butyrate-producing bacteria (BPB) were significantly reduced in CI patients, while lactic acid bacteria (LAB) were increased. Genetically, BPB-related functional genes were reduced in CI patients, whereas LAB-related genes were enhanced. The interbacterial correlations among BPB in CI patients were less prominent than those in healthy controls. Clinically, BPB was negatively associated with the National Institutes of Health Stroke Scale (NIHSS), while LAB was positively correlated with NIHSS. Both BPB and LAB played leading roles in the diagnostic model based on 47 bacteria.ConclusionsThe abundance and functions of BPB in CI patients were significantly decreased, while LAB were increased. Both BPB and LAB displayed promising potential in the assessment and diagnosis of CI.


Nutrition ◽  
2015 ◽  
Vol 31 (6) ◽  
pp. 884-889 ◽  
Author(s):  
Alessandra Zanin Zambom de Souza ◽  
Adriano Zanin Zambom ◽  
Kahlile Youssef Abboud ◽  
Sabrina Karen Reis ◽  
Fabiana Tannihão ◽  
...  

Nature ◽  
2016 ◽  
Vol 536 (7615) ◽  
pp. 238-238 ◽  
Author(s):  
Benoit Chassaing ◽  
Omry Koren ◽  
Julia K. Goodrich ◽  
Angela C. Poole ◽  
Shanthi Srinivasan ◽  
...  

2014 ◽  
Vol 45 (3) ◽  
pp. 195-202 ◽  
Author(s):  
Hai-Ning Yu ◽  
Jing Zhu ◽  
Wen-sheng Pan ◽  
Sheng-Rong Shen ◽  
Wei-Guang Shan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document