scholarly journals IMMUNOLOGY AND PROSPECTS OF IMMUNOTHERAPY OF THE PRIMARY MALIGNANT BRAIN TUMORS: CELLULAR THERAPY, VIROTHERAPY

2020 ◽  
Vol 66 (3) ◽  
pp. 218-222
Author(s):  
Svetlana Kuleva ◽  
Aleksandr Druy

High-grade gliomas (Grade III-IV) are aggressive brain tumor with poor prognosis. Recent investigations are aimed on pathogenic mechanisms of tumor growth on cellular at the molecular-genetic level for the development of effective individualized treatment methods, while the limit of survival benefit of conventional therapeutic options has been already reached. Integration of immunotherapeutic approach (cellular therapy, virotherapy) into treatment schemes of the brain tumors is relevant and promising strategy based on biological features of tumor tissue.

2021 ◽  
Vol 66 (12) ◽  
pp. 718-721
Author(s):  
Larisa Mikhailovna Obukhova ◽  
I. A. Medyanik ◽  
K. N. Kontorshchikova ◽  
S. A. Simagina ◽  
L. T. Musaelyan ◽  
...  

It has been established that the non-neuronal cholinergic system is related to the oncogenesis which increases the attractiveness of its components as the promising markers of oncologic diseases. The purpose of this work is to evaluate the clinical significance of the analysis of the activity of acetyl cholinesterase as a new marker of gliomas. The activity of acetyl cholinesterase was assessed by photo colorimetric analysis according to the Hestrin method recalculating the activity of the enzyme in the tumor tissue per 1 g of protein, and in the blood - by 0.1 g of hemoglobin. The data obtained in the primary tumors of the brain (28) in the tissue of the brain of persons who died as a result of injury (6) and in whole blood of patients with gliomas (28) and practically healthy people (10) were compared with the use of a number of statistical programs. A significant decrease in the activity of acetyl cholinesterase in tumor tissue and in whole blood is revealed as the degree of anaplasia of tumors increases, starting with Grade II. It is for the first time that a significant direct correlation was noted showing the consistency between the decrease in the activity of acetyl cholinesterase in the tumor tissue of the brain and blood. Bioinformatic analysis showed the connection of the enzyme of acetyl cholinesterase with proteins of the PI3K-AKT and Notch signaling pathways providing antiapoptotic and proliferative effects. The found dependences provide new insights into understanding of the mechanisms of gliomas genesis and can be used for selection of new diagnostic markers of brain tumors.


1985 ◽  
Vol 62 (3) ◽  
pp. 414-418 ◽  
Author(s):  
Toshiki Yoshimine ◽  
Yukitaka Ushio ◽  
Toru Hayakawa ◽  
Hiroshi Hasegawa ◽  
Norio Arita ◽  
...  

✓ Tissues from 12 metastatic tumors of the brain were studied immunohistochemically with an antiserum to a glia-specific protein, astroprotein (glial fibrillary acidic protein, GFAP). Emphasis was laid on demonstrating the tissue architecture of metastatic lesions incorporating brain-derived components (astrocytes and glial fibers). Of 12 samples, 11 manifested a number of irregular indentations at the tumor surface. These indentations, which contained astrocytic elements, extended into the tumor tissue in a tapering fashion. In seven cases, the deeper stromal portions of the tumor also contained astroprotein (GFAP)-positive elements. The presence of this glia-specific protein suggests that the stroma of the tumor tissue may in part be derived from preexisting brain tissue. This peculiar tissue architecture of the tumor supports the hypothesis that some of the blood vessels that are located in the stroma of the tumor tissue are also derived from the brain. These observations may be important in understanding the partial preservation of the blood-brain barrier in metastatic brain tumors and the mode of growth of the metastatic lesion, and in selecting the type of chemotherapy that will be most effective in controlling this central nervous system complication of systemic malignancies.


2019 ◽  
Vol 6 (2) ◽  
pp. 8-20
Author(s):  
A. B. Villert ◽  
L. A. Kolomiets ◽  
N. V. Yunusova

The severe heterogeneity of ovarian carcinomas on the molecular genetic level is associated with the absence of specific markers of chemoresistance. At the same time, ascites is an attractive biomarker detection fluid because it is easily obtained. The review is dedicated to the latest advances in the study of components characteristics of ascitic fluid in terms of their relationship with chemoresistance. Оwn data are submitted regarding the contents of the IFR system parameters (free IGFs, as well as IGFBP-3, IGFBP-4 and PAPP-A) in ascitic fluids and tumor tissue in disseminated ovarian cancer, which show the importance of their study. It is shown that the proteins level of the IGF system substantially depend on the volume of ascitic fluid. Studying the features of ascitic fluid in ovarian cancer is directly related to the prospect of new opportunities for disseminated ovarian cancer treatment.


2020 ◽  
Vol 20 ◽  
Author(s):  
Milad Ashrafizadeh ◽  
Ali Zarabi ◽  
Kiavash Hushmandi ◽  
Ebrahim Rahmani Moghadam ◽  
Farid Hashemi ◽  
...  

: Brain tumors are responsible for high morbidity and mortality worldwide. Several factors such as the presence of blood-brain barrier (BBB), sensitive location in the brain, and unique biological features challenge the treatment of brain tumors. The conventional drugs are no longer effective in the treatment of brain tumors, and scientists are trying to find novel therapeutics for brain tumors. In this way, identification of molecular pathways can facilitate finding an effective treatment. c-Myc is an oncogene signaling pathway capable of regulation of biological processes such as apoptotic cell death, proliferation, survival, differentiation, and so on. These pleiotropic effects of c-Myc have resulted in much fascination with its role in different cancers, particularly brain tumors. In the present review, we aim to demonstrate the upstream and down-stream mediators of c-Myc in brain tumors such as glioma, glioblastoma, astrocytoma, and medulloblastoma. The capacity of c-Myc as a prognostic factor in brain tumors will be investigated. Our goal is to define an axis in which the cMyc signaling pathway plays a crucial role and to provide direction for therapeutic targeting in these signaling networks in brain tumors.


1992 ◽  
Vol 77 (2) ◽  
pp. 302-306 ◽  
Author(s):  
Margaret R. Wacker ◽  
Philip H. Cogen ◽  
Joan E. Etzell ◽  
Laleh Daneshvar ◽  
Richard L. Davis ◽  
...  

✓ Gangliogliomas are tumors composed of neuronal and glial elements that typically grow slowly by expansion only. This report describes a 20-month-old girl with a ganglioglioma that extensively involved the subarachnoid space; microscopic foci of tumor were found in the brain and spinal cord. Despite chemotherapy and radiation therapy, the child died 5 months after diagnosis. Molecular genetic analysis showed loss of chromosome 17p DNA sequences in the tumor tissue.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Beatrix Wulkersdorfer ◽  
Martin Bauer ◽  
Rudolf Karch ◽  
Harald Stefanits ◽  
Cécile Philippe ◽  
...  

Abstract Background P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) are two efflux transporters expressed at the blood–brain barrier which effectively restrict the brain distribution of the majority of currently known anticancer drugs. High-grade brain tumors often possess a disrupted blood–brain tumor barrier (BBTB) leading to enhanced accumulation of magnetic resonance imaging contrast agents, and possibly anticancer drugs, as compared to normal brain. In contrast to high-grade brain tumors, considerably less information is available with respect to BBTB integrity in lower grade brain tumors. Materials and methods We performed positron emission tomography imaging with the radiolabeled ABCB1 inhibitor [11C]tariquidar, a prototypical ABCB1/ABCG2 substrate, in seven patients with non-contrast -enhancing brain tumors (WHO grades I–III). In addition, ABCB1 and ABCG2 levels were determined in surgically resected tumor tissue of four patients using quantitative targeted absolute proteomics. Results Brain distribution of [11C]tariquidar was found to be very low across the whole brain and not significantly different between tumor and tumor-free brain tissue. Only one patient showed a small area of enhanced [11C]tariquidar uptake within the brain tumor. ABCG2/ABCB1 ratios in surgically resected tumor tissue (1.4 ± 0.2) were comparable to previously reported ABCG2/ABCB1 ratios in isolated human micro-vessels (1.3), which suggested that no overexpression of ABCB1 or ABCG2 occurred in the investigated tumors. Conclusions Our data suggest that the investigated brain tumors had an intact BBTB, which is impermeable to anticancer drugs, which are dual ABCB1/ABCG2 substrates. Therefore, effective drugs for antitumor treatment should have high passive permeability and lack ABCB1/ABCG2 substrate affinity. Trial registration European Union Drug Regulating Authorities Clinical Trials Database (EUDRACT), 2011-004189-13. Registered on 23 February 2012, https://www.clinicaltrialsregister.eu/ctr-search/search?query=2011-004189-13.


Author(s):  
М.М. Руденок ◽  
А.Х. Алиева ◽  
А.А. Колачева ◽  
М.В. Угрюмов ◽  
П.А. Сломинский ◽  
...  

Несмотря на очевидный прогресс, достигнутый в изучении молекулярно-генетических факторов и механизмов патогенеза болезни Паркинсона (БП), в настоящее время стало ясно, что нарушения в структуре ДНК не описывают весь спектр патологических изменений, наблюдаемых при развитии заболевания. В настоящее время показано, что существенное влияние на патогенез БП могут оказывать изменения на уровне транскриптома. В работе были использованы мышиные модели досимптомной стадии БП, поздней досимптомной и ранней симптомной (РСС) стадиями БП. Для полнотранскриптомного анализа пулов РНК тканей черной субстанции и стриатума мозга мышей использовались микрочипы MouseRef-8 v2.0 Expression BeadChip Kit («Illumina», США). Полученные данные указывают на последовательное вовлечение транскриптома в патогенез БП, а также на то, что изменения на транскриптомном уровне процессов транспорта и митохондриального биогенеза могут играть важную роль в нейродегенерации при БП уже на самых ранних этапах. Parkinson’s disease (PD) is a complex systemic disease, mainly associated with the death of dopaminergic neurons. Despite the obvious progress made in the study of molecular genetic factors and mechanisms of PD pathogenesis, it has now become clear that violations in the DNA structure do not describe the entire spectrum of pathological changes observed during the development of the disease. It has now been shown that changes at the transcriptome level can have a significant effect on the pathogenesis of PD. The authors used models of the presymptomatic stage of PD with mice decapitation after 6 hours (6 h-PSS), presymptomatic stage with decapitation after 24 hours (24 h-PSS), advanced presymptomatic (Adv-PSS) and early symptomatic (ESS) stages of PD. For whole transcriptome analysis of RNA pools of the substantia nigra and mouse striatum, the MouseRef-8 v2.0 Expression BeadChip Kit microchips (Illumina, USA) were used. As a result of the analysis of whole transcriptome data, it was shown that, there are a greater number of statistically significant changes in the tissues of the brain and peripheral blood of mice with Adv-PSS and ESS models of PD compared to 6 h-PSS and 24 h-PSS models. In general, the obtained data indicate the sequential involvement of the transcriptome in the pathogenesis of PD, as well as the fact that changes at the transcriptome level of the processes of transport and mitochondrial biogenesis can play an important role in neurodegeneration in PD at an early stage.


Author(s):  
Shoaib Amin Banday ◽  
Mohammad Khalid Pandit

Introduction: Brain tumor is among the major causes of morbidity and mortality rates worldwide. According to National Brain Tumor Foundation (NBTS), the death rate has nearly increased by as much as 300% over last couple of decades. Tumors can be categorized as benign (non-cancerous) and malignant (cancerous). The type of the brain tumor significantly depends on various factors like the site of its occurrence, its shape, the age of the subject etc. On the other hand, Computer Aided Detection (CAD) has been improving significantly in recent times. The concept, design and implementation of these systems ascend from fairly simple ones to computationally intense ones. For efficient and effective diagnosis and treatment plans in brain tumor studies, it is imperative that an abnormality is detected at an early stage as it provides a little more time for medical professionals to respond. The early detection of diseases has predominantly been possible because of medical imaging techniques developed from past many decades like CT, MRI, PET, SPECT, FMRI etc. The detection of brain tumors however, has always been a challenging task because of the complex structure of the brain, diverse tumor sizes and locations in the brain. Method: This paper proposes an algorithm that can detect the brain tumors in the presence of the Radio-Frequency (RF) inhomoginiety. The algorithm utilizes the Mid Sagittal Plane as a landmark point across which the asymmetry between the two brain hemispheres is estimated using various intensity and texture based parameters. Result: The results show the efficacy of the proposed method for the detection of the brain tumors with an acceptable detection rate. Conclusion: In this paper, we have calculated three textural features from the two hemispheres of the brain viz: Contrast (CON), Entropy (ENT) and Homogeneity (HOM) and three parameters viz: Root Mean Square Error (RMSE), Correlation Co-efficient (CC), and Integral of Absolute Difference (IAD) from the intensity distribution profiles of the two brain hemispheres to predict any presence of the pathology. First a Mid Sagittal Plane (MSP) is obtained on the Magnetic Resonance Images that virtually divides brain into two bilaterally symmetric hemispheres. The block wise texture asymmetry is estimated for these hemispheres using the above 6 parameters.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2104 ◽  
Author(s):  
Eleonora Ficiarà ◽  
Shoeb Anwar Ansari ◽  
Monica Argenziano ◽  
Luigi Cangemi ◽  
Chiara Monge ◽  
...  

Magnetic Oxygen-Loaded Nanobubbles (MOLNBs), manufactured by adding Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on the surface of polymeric nanobubbles, are investigated as theranostic carriers for delivering oxygen and chemotherapy to brain tumors. Physicochemical and cyto-toxicological properties and in vitro internalization by human brain microvascular endothelial cells as well as the motion of MOLNBs in a static magnetic field were investigated. MOLNBs are safe oxygen-loaded vectors able to overcome the brain membranes and drivable through the Central Nervous System (CNS) to deliver their cargoes to specific sites of interest. In addition, MOLNBs are monitorable either via Magnetic Resonance Imaging (MRI) or Ultrasound (US) sonography. MOLNBs can find application in targeting brain tumors since they can enhance conventional radiotherapy and deliver chemotherapy being driven by ad hoc tailored magnetic fields under MRI and/or US monitoring.


2021 ◽  
Vol 151 (3) ◽  
pp. 429-442
Author(s):  
Clark Chen ◽  
Ian Lee ◽  
Claudio Tatsui ◽  
Theresa Elder ◽  
Andrew E. Sloan

Abstract Introduction Laser Interstitial Thermotherapy (LITT; also known as Stereotactic Laser Ablation or SLA), is a minimally invasive treatment modality that has recently gained prominence in the treatment of malignant primary and metastatic brain tumors and radiation necrosis and studies for treatment of spinal metastasis has recently been reported. Methods Here we provide a brief literature review of the various contemporary uses for LITT and their reported outcomes. Results Historically, the primary indication for LITT has been for the treatment of recurrent glioblastoma (GBM). However, indications have continued to expand and now include gliomas of different grades, brain metastasis (BM), radiation necrosis (RN), other types of brain tumors as well as spine metastasis. LITT is emerging as a safe, reliable, minimally invasive clinical approach, particularly for deep seated, focal malignant brain tumors and radiation necrosis. The role of LITT for treatment of other types of tumors of the brain and for spine tumors appears to be evolving at a small number of centers. While the technology appears to be safe and increasingly utilized, there have been few prospective clinical trials and most published studies combine different pathologies in the same report. Conclusion Well-designed prospective trials will be required to firmly establish the role of LITT in the treatment of lesions of the brain and spine.


Sign in / Sign up

Export Citation Format

Share Document