Multiphase technologies in oil-gas production

2020 ◽  
pp. 42-46
Author(s):  
G.G. Ismayilov ◽  

Emergency cases, complications, maximum energetic cost, human and material expenses, negative impact on the environment in the oil-gas production taking place in the system “ well – oil and gas collection” are predominantly associated with the multiphase and multicomponent well production. Considering the research results of recent years, we can mark that in the view of hydraulic properties of the flows and interactions of seperate phases, currently are formed multiphase technologies, on the basis of which solution of various issues and increase of efficiency of technological processes in production, collection, transportation and storage of oil and gas becomes possible. The paper reviews the perspectives of solution of few issues of oil-gas production using multiphase technologies, on the basis of which the phase interaction lies. Some problems of oil-gas production, the solution of which becomes possible with multiphase technologies are noted as well.

2021 ◽  
Vol 73 (07) ◽  
pp. 57-57
Author(s):  
Leonard Kalfayan

As unconventional oil and gas fields mature, operators and service providers are looking toward, and collaborating on, creative and alternative methods for enhancing production from existing wells, especially in the absence of, or at least the reduction of, new well activity. While oil and gas price environments remain uncertain, recent price-improvement trends are supporting greater field testing and implementation of innovative applications, albeit with caution and with cost savings in mind. Not only is cost-effectiveness a requirement, but cost-reducing applications and solutions can be, too. Of particular interest are applications addressing challenging well-production needs such as reducing or eliminating liquid loading in gas wells; restimulating existing, underperforming wells, including as an alternative to new well drilling and completion; and remediating water blocking and condensate buildup, both of which can impair production from gas wells severely. The three papers featured this month represent a variety of applications relevant to these particular well-production needs. The first paper presents a technology and method for liquid removal to improve gas production and reserves recovery in unconventional, liquid-rich reservoirs using subsurface wet-gas compression. Liquid loading, a recurring issue downhole, can severely reduce gas production and be costly to remediate repeatedly, which can be required. This paper discusses the full technology application process and the supportive results of the first field trial conducted in an unconventional shale gas well. The second paper discusses the application of the fishbone stimulation system and technique in a tight carbonate oil-bearing formation. Fishbone stimulation has been around for several years now, but its best applications and potential have not necessarily been fully understood in the well-stimulation community. This paper summarizes a successful pilot application resulting in a multifold increase in oil-production rate and walks the reader through the details of the pilot candidate selection, completion design, operational challenges, and lessons learned. The third paper introduces and proposes a chemical treatment to alleviate phase trapping in tight carbonate gas reservoirs. Phase trapping can be in the form of water blocking or increasing condensate buildup from near the wellbore and extending deeper into the formation over time. Both can reduce relative permeability to gas severely. Water blocks can be a one-time occurrence from drilling, completion, workover, or stimulation operations and can often be treated effectively with solvent plus proper additive solutions. Similar treatments for condensate banking in gas wells, however, can provide only temporary alleviation, if they are even effective. This paper proposes a technique for longer-term remediation of phase trapping in tight carbonate gas reservoirs using a unique, slowly reactive fluid system. Recommended additional reading at OnePetro: www.onepetro.org. SPE 200345 - Insights Into Field Application of Enhanced-Oil-Recovery Techniques From Modeling of Tight Reservoirs With Complex High-Density Fracture Network by Geng Niu, CGG, et al. SPE 201413 - Diagnostic Fracture Injection Test Analysis and Simulation: A Utica Shale Field Study by Jeffery Hildebrand, The University of Texas at Austin, et al.


2008 ◽  
Vol 51 ◽  
pp. 21-30
Author(s):  
Guang Hong Yin

The development of oil&gas steel products in Baosteel in the past two decades is reviewed. After years of R&D works of steel products used in energy industry such as drilling, exploitation, collection, transportation, and storage of oil and gas, the alloy system and manufacturing processes of oil&gas steel products have been established in Baosteel. The oil&gas steel products of Baosteel consist of two major categories, i.e. the Oil Country Tubular Goods used in underground service, and the pipes used for pipeline construction on the ground. Currently, the product quality has been maintained stable, and the involved products have been extensively used in worldwide oil&gas exploration and transportation industry.


2019 ◽  
Vol 12 (3) ◽  
pp. 46-57 ◽  
Author(s):  
S. V. Kazantsev

The article presents the results of the author’s research of the impact of a wide range of restrictions and prohibitions applied to theRussian Federation, used by a number of countries for their geopolitical purposes and as a means of competition. The object of study was the impact of anti-Russian sanctions on the development of Oil & Gas industry and defence industry complex ofRussiain 2014–2016. The purpose of the analysis was to assess the impact of sanctions on the volume of oil and gas production, the dynamics of foreign earnings from the export of oil and gas, and of foreign earnings from the sale abroad of military and civilian products of the Russian defence industry complex (DIC). As the research method, the author used the economic analysis of the time series of statistical data presented in open statistics and literature. The author showed that some countries use the anti-Russian sanctions as a means of political, financial, economic, scientific, and technological struggle with the leadership ofRussiaand Russian economic entities. It is noteworthy that their introduction in 2014 coincided with the readiness of theUSto export gas and oil, which required a niche in the international energy market. The imposed sanctions have affected the volume of oil production inRussia, which was one of the factors of reduction of foreign earnings from the country’s oil and gas exports. However, the Russian defence industry complex has relatively well experienced the negative impact of sanctions and other non-market instruments of competition


2006 ◽  
Vol 46 (1) ◽  
pp. 435
Author(s):  
B. Hooper ◽  
B. Koppe ◽  
L. Murray

The Latrobe Valley in Victoria’s Gippsland Basin is the location of one of Australia’s most important energy resources—extremely thick, shallow brown coal seams constituting total useable reserves of more than 50,000 million tonnes. Brown coal has a higher moisture content than black coal and generates more CO2 emissions per unit of useful energy when combusted. Consequently, while the Latrobe Valley’s power stations provide Australia’s lowest- cost bulk electricity, they are also responsible for over 60 million tonnes of CO2 emissions per year—over half of the Victorian total. In an increasingly carbon constrained world the ongoing development of the Latrobe Valley brown coal resource is likely to require a drastic reduction in the CO2 emissions from new coal use projects—and carbon capture and storage (CCS) has the potential to meet such deep cuts. The offshore Gippsland Basin, the site of major producing oil and gas fields, has the essential geological characteristics to provide a high-volume, low-cost site for CCS. The importance of this potential to assist the continuing use of the nation’s lowest-cost energy source prompted the Australian Government to fund the Latrobe Valley CO2 Storage Assessment (LVCSA).The LVCSA proposal was initiated by Monash Energy (formerly APEL, and now a 100% subsidiary of Anglo American)—the proponent of a major brown coal-to-liquids plant in the Latrobe Valley. Monash Energy’s plans for the 60,000 BBL per day plant include CCS to store about 13 million tonnes of CO2 per year. The LVCSA, undertaken for Monash Energy by the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC), provides a medium to high-level technical and economic characterisation of the volume and cost potential for secure geosequestration of CO2 produced by the use of Latrobe Valley brown coal (Hooper et al, 2005a). The assessment’s scope includes consideration of the interaction between CO2 injection and oil and gas production, and its findings have been publicly released for use by CCS proponents, oil and gas producers and all other interested parties as an executive summary, (Hooper et al, 2005b), a fact sheet (Hooper et al, 2005c) and a presentation (Hooper et al, 2005d)).The LVCSA identifies the key issues and challenges for implementing CCS in the Latrobe Valley and provides a reference framework for the engagement of stakeholders. In effect the LVCSA constitutes a pre-feasibility study for the implementation of geosequestration in support of the continuing development of Victoria’s brown coal resources.The LVCSA findings indicate that the Gippsland Basin has sufficient capacity to safely and securely store large volumes of CO2 and may provide a viable means of substantially reducing greenhouse gas emissions from coal-fired power plants and other projects using brown coal in the Latrobe Valley. The assessment also indicates that CO2 injection could well be designed to avoid any adverse impact on adjacent oil and gas production, so that CO2 injection can begin near fields that have not yet come to the end of their productive lives. However, CCS proposals involving adjacent injection and production will require more detailed risk management strategies and continuing cooperation between prospective injectors and existing producers.


2018 ◽  
pp. 121-141
Author(s):  
Roman Temnikov

The relations between Azerbaijan and Russia have deep historical roots. For about two centuries they have been part of common state – Russian empire and the Soviet Union. Such cohabitation in the frames of one state had led to emergence of common features in development of two societies. One of these features is an important role of oil and gas production in economy. But despite of this similarity the Azerbaijani-Russian relations were not always benevolent. First of all, Azerbaijan for almost two centuries had been under Russian occupation. Even after dissolution of the USSR the relations of the former center – Moscow with the former Soviet republic which restored the independence – Azerbaijan, remained difficult. Practically from the first years of independence energy factor in the Azerbaijani-Russian relations has had the negative impact on already tense relations between two countries. During the modern period, after the beginning of gas production on new fields in Azerbaijan and after completion of the Southern gas corridor’ construction on delivery of the Azerbaijani gas to Europe, the Azerbaijani-Russian relations will expect hard times again.


2020 ◽  
pp. 65-68
Author(s):  
O.B. Huseinli ◽  

The paper reviews the formation prospects of two up-to-date forms of economic cooperation in the sphere of oil and gas production – outsourcing and clustering, as well as the schematic presentation of their implementation. The outsourcing means the execution of the functions on the systematic professional support of working efficiency of the business customer by the operation company under the permanent contract. The outsourcing allows the oil-gas producing company increasing its capitalization and profit amount. Therefore, the oil company can fix innovative, scientific and technological resources in its hands providing maximum meeting of business customers’ demands. The development of oil service cluster, in its turn, aims to provide the interaction of all corporate parties. The establishment of cluster unions in oil-gas field with the participation of petroleum service companies under the principles mentioned in the paper will contribute to the development of both oil-gas complex in a whole and petroleum service market.


2018 ◽  
Vol 245 ◽  
pp. 03004 ◽  
Author(s):  
Marina Gravit ◽  
Elena Golub

Fire protection of building structures under the hydrocarbon fire is becoming more relevant, especially in the design and construction of oil and gas and chemical complex facilities, including offshore fixed platforms, liquefied natural gas production and storage facilities and other objects of the fuel and energy complex. The development dynamics of such a fire requires a different approach to testing the structures in order to determine the fire resistance limit. The fire resistance tests of a steel horizontal structure with a fire resistance suspended ceiling of PROMATECT-T plates were carried out under the condition of creating a hydrocarbon temperature combustion regime. A detailed description of the tested ceiling design is given. It is shown that at the time of the end of the fire action, the limit state due to the loss of load capacity (R) and loss of integrity (E) was not recorded when the test reached 120 minutes.


Sign in / Sign up

Export Citation Format

Share Document