Additiver Hybrid-Leichtbau – Highlight 3D print*/Additive Hybrid Lightweight Construction - Highlight 3D print

2016 ◽  
Vol 106 (03) ◽  
pp. 169-174
Author(s):  
R. Geiger ◽  
S. Rommel ◽  
J. Burkhardt ◽  
T. Prof. Bauernhansl

Additive Fertigungsverfahren bieten durch ihren schichtweisen Aufbau einzigartige Gestaltungsfreiheiten. Hieraus leitet sich ein enormes Potential für den strukturellen Leichtbau ab. Bionische Leichtbaustrukturen, integrierte Funktionalitäten sowie topologieoptimierte Bauteile lassen sich direkt produzieren. Neben dem strukturellen Leichtbau lassen sich durch die Verwendung hochfester Werkstoffe oder von Werkstoffen mit geringer Dichte ebenfalls Leichtbauprodukte generieren. Ein Beispiel für werkstofflichen Leichtbau sind Faserverbundstrukturen, welche geringe Materialdichte mit hoher Festigkeit kombinieren. Durch Bündelung der Vorteile additiver Fertigungsverfahren mit Halbzeugen aus Hochleistungswerkstoffen – beispielsweise kohlenstofffaserverstärkten Kunststoffen – werden noch leichtere Produkte möglich. Besonders die Funktionsintegration und die Designfreiheit additiver Verfahren schaffen hier völlig neue Gestaltungsmöglichkeiten und einen Individualisierungsgrad, der im Leichtbau bisher unbekannt ist. Anhand eines Produktbeispiels wird aufgezeigt, welche Potentiale additiver Hybrid-Leichtbau eröffnet. Ausgehend von einer topologieoptimierten Form erfolgt die Ableitung eines Bauteils. Dies wird im Lasersinterverfahren (SLS) gefertigt und in Kombination mit Kohlenstofffaserverbund (CFK)-Rohren sowie weiteren additiv gefertigten Bauteilen zum Produkt „Hocker“ zusammengefügt. Parallel wird das Verbundsystem digital abgebildet und simulativ überprüft.   Additive manufacturing technology offers unique design flexibility due to its layer-based construction approach. This provides new potential for lightweight construction. Bionic lightweight structures, integrated functionality, and topology-optimized structures can now be manufactured. Another method to generate lightweight design is the use of high-strength materials with low density. For example, fiber reinforced materials which combine high-tensile fibers with low material density. The combination of these two unique benefits leads towards ultra-light products. The degree of individualization through additive manufacturing represents a new tool in the field of lightweight design, providing new construction possibilities. This paper presents the potential of hybrid lightweight design with the help of a specific product. An ergonomic lightweight seat starts with a topology optimized 3D form. The construction combines additive manufactured parts with carbon fiber reinforced plastic (CFRP) pre-products. Additionally, the interaction between the constituent parts has been simulated.

2021 ◽  
Vol 5 (12) ◽  
pp. 325
Author(s):  
Olusanmi Adeniran ◽  
Weilong Cong ◽  
Eric Bediako ◽  
Victor Aladesanmi

The additive manufacturing (AM) of carbon fiber reinforced plastic (CFRP) composites continue to grow due to the attractive strength-to-weight and modulus-to-weight ratios afforded by the composites combined with the ease of processibility achievable through the AM technique. Short fiber design factors such as fiber content effects have been shown to play determinant roles in the mechanical performance of AM fabricated CFRP composites. However, this has only been investigated for tensile and flexural properties, with no investigations to date on compressive properties effects of fiber content. This study examined the axial and transverse compressive properties of AM fabricated CFRP composites by testing CF-ABS with fiber contents from 0%, 10%, 20%, and 30% for samples printed in the axial and transverse build orientations, and for axial tensile in comparison to the axial compression properties. The results were that increasing carbon fiber content for the short-fiber thermoplastic CFRP composites slightly reduced compressive strength and modulus. However, it increased ductility and toughness. The 20% carbon fiber content provided the overall content with the most decent compressive properties for the 0–30% content studied. The AM fabricated composite demonstrates a generally higher compressive property than tensile property because of the higher plastic deformation ability which characterizes compression loaded parts, which were observed from the different failure modes.


Author(s):  
Nashat Nawafleh ◽  
Emrah Celik

Abstract Additive manufacturing (AM) is a novel technology which allows fabrication of complex geometries from digital representations without tooling. In addition, this technology results in low material waste, short lead times and cost reduction especially for the production of parts in low quantities. Current additive manufacturing processes developed for thermoplastic sandwich panels suffer from an unavoidable weak mechanical performance and low thermal resistance. To overcome these limitations, emphasis is paid in this study on direct write AM technology for the fabrication of short carbon fiber-reinforced sandwich panel composites. Sandwich panels using different infill densities with high strength (> 107 MPa), and high short carbon fiber volume (46%) were attained successfully. In parallel to the strength enhancement, these sandwich panels possessed reduced densities (0.72 g/cc3) due to their lightweight lattice core structures. The mechanical performance of the created sandwich panels was examined and compared to the unreinforced, base ink structures by performing compression tests. Successful fabrication and characterization of the additively manufactured thermoset-based carbon fiber reinforced, sandwich panels in this study can extend the range of applications for AM composites that require lightweight structures, high mechanical performance as well as the desired component complexity.


2018 ◽  
Vol 12 (6) ◽  
pp. 930-939 ◽  
Author(s):  
Atsushi Motegi ◽  
Tomohiro Hishida ◽  
Yasuhiko Murata ◽  
◽  

In recent years, long glass fiber reinforced plastic and carbon fiber reinforced plastic have begun to be used for structural components that require high strength. As a result, thick-walled injection molded products are being manufactured. However, defects, known as voids, are generated inside the molded product and decrease the strength of the molded product, posing a significant problem at molding production sites. The partial compression method, which is a type of injection compression molding, is effective in preventing voids in thick-walled injection molding. However, there have been limited studies that comprehensively investigated the effects of the compression conditions on void prevention in thick-walled injection molding products or the shape and dimension of the molded product, or the issues in the molded product produced by applying compression. The authors have previously proposed the in-mold pressing (IMP) method, which allows the application of partial compression without the use of an injection compression molding machine and verified its validity. In this study, we proposed a compression device in which a servomotor-driven hydraulic pump actuator is used to propel a movable rod to apply compression to the melt inside the mold cavity. The IMP method using this device was applied to mold thick-walled products with thicknesses of 10 mm and greater, and the effects of compression on the generation of voids inside the molded product and the shape and dimensions of the product were investigated. The results indicate that the generation of voids can be prevented by application of this method. In addition, it was found that marginal deformations, which can pose issues, occur in the molded product when compressive stresses generated inside the molded product by compression are released after demolding.


2003 ◽  
Vol 2003 (0) ◽  
pp. 125-126
Author(s):  
Noriyo HORIKAWA ◽  
Yoshio HARUYAMA ◽  
Hideaki NAKAYAMA ◽  
Takashi IMAMICHI ◽  
Akiyoshi SAKAIDA ◽  
...  

2014 ◽  
Vol 1017 ◽  
pp. 383-388 ◽  
Author(s):  
Jumpei Kusuyama ◽  
Akinori Yui ◽  
Takayuki Kitajima ◽  
Yosuke Itoh

Carbon Fiber Reinforced Plastic (CFRP) is a high-strength and high-elastic-modulus composite material that is hardened by impregning carbon fiber with epoxy resin. Although, many sutdies of hole drilling of CFRP have been conducted, few sutdies of face milling of CFRP have been carried out. Face milling is necessary for surfaceing of aerospace parts, which is indispensable for airplane construction. Machining of CFRP is difficult because of the extreme tool wear and delamination that occur. The authors investigated face milling of CFRP using a newly developed Poly Crystalline Diamond (PCD) tool. The resultts show, that the cutting force and surface roughness are affected by the fiber orientation of the CFRP, and that delamination can easily occur in the outer layer of face-nilled CFRP.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 579
Author(s):  
Anika Langebeck ◽  
Annika Bohlen ◽  
Rüdiger Rentsch ◽  
Frank Vollertsen

A manifold variety of additive manufacturing techniques has a significant positive impact on many industry sectors. Large components are often manufactured via directed energy deposition (DED) instead of using powder bed fusion processes (PBF). The advantages of the DED process are a high build-up rate with values up to 300 cm3/h and a nearly limitless build-up volume. In combination with the lightweight material aluminum it is possible to manufacture large lightweight components with geometries adapted to customer requirements in small batches. This contributes the pursuit of higher efficiency of machines through lightweight materials as well as lightweight design. A low-defect additive manufacturing of high strength aluminum EN AW-7075 powder via DED is an important challenge. The laser power has a significant influence on the remaining porosity. By increasing the laser power from 2 kW to 4 kW the porosity in single welding tracks can be lowered from 2.1% to only (0.09 ± 0.07)% (n = 3). However, when manufacturing larger specimens; the remaining porosity is higher than in single tracks; which can be attributed to the oxide skin on the preceding welding tracks. Further investigations regarding the mechanical properties were carried out. In tensile tests an ultimate tensile strength of (222 ± 17) MPa (n = 6) was measured. The DED processed EN AW-7075 shows comparable mechanical properties to PBF processed EN AW-7075.


2012 ◽  
Vol 525-526 ◽  
pp. 249-252
Author(s):  
Wei Chen Xue ◽  
Kai Fu

Fiber reinforced plastic (FRP) composite which has high strength, high fatigue resistance, low density, and better corrosion resistances is desirable characteristics for bridge applications, especially decks. According to the ACI 440.3R04, Glass fiber reinforced plastic (GFRP) bridge deck samples were immersed into the simulated concrete environment at 60 for 92d (corresponds to the natural environment 25 years). The results show that, with the time increased, the interlaminal shear strength of GFRP bridge decks decreased significantly. After being exposed to the simulated concrete environment for 3.65d, 18d, 36.5d and 92d, the interlaminal shear strength degradation of GFRP bridge decks were 18.69%, 25.90%, 50.93% and 53.74%, respectively. The micro-formation of the GFRP bridge deck sample surface was surveyed under scanning electron microscopy (SEM), which indicated that with the aging time increased, corrosion pits in the surface of GFRP bridge decks became more obviously and the interface between fiber and resin was severely damaged. Therefore, the degradation of FRP under the simulated concrete environment should be considered in the design of FRP bridge decks.


2021 ◽  
Vol 11 (7) ◽  
pp. 2900
Author(s):  
In-Kyu Kang ◽  
Sun-Hee Kim

In this study, an experiment on compressive strength of the hybrid concrete-filled fiber-reinforced polymer (FRP) tube (CFFT) confined by filament winding was conducted to improve the longitudinal strength while considering the thickness of filament winding as a variable. A maximum error of 17% was observed when the results of performing the finite element analysis (FEA) by applying the mechanical properties of the fiber-reinforced polymer (FRP) materials suggested in previous studies were compared to those of the compressive strength experiment on the hybrid-CFFT. Moreover, a maximum error of 15% was exhibited when the results derived from the strength equation proposed by analyzing the compressive strength experiment were compared. Furthermore, the compressive strength of the hybrid-CFFT increased by up to 14% when the longitudinal compressive strength of the pre-tensioned spun high strength concrete (PHC) pile and concrete-filled tube (CFT) were compared.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 636
Author(s):  
Junsik Bang ◽  
Hyunju Lee ◽  
Yemi Yang ◽  
Jung-Kwon Oh ◽  
Hyo Won Kwak

The focus on high-strength and functional natural fiber-based composite materials is growing as interest in developing eco-friendly plastics and sustainable materials increases. An eco-friendly fibrous composite with excellent mechanical properties was prepared by applying the bamboo-derived nano and microfiber multiscale hybridization phenomenon. As a result, the cellulose nanofibers simultaneously coated the micro-bamboo fiber surface and adhered between them. The multiscale hybrid phenomenon implemented between bamboo nano and microfibers improved the tensile strength, elongation, Young’s modulus, and toughness of the fibrous composite. The enhancement of the fibrous preform mechanical properties also affected the reinforcement of biodegradable fiber-reinforced plastic (FRP). This eco-friendly nano/micro fibrous preform can be extensively utilized in reinforced preforms for FRPs and other green plastic industry applications.


Sign in / Sign up

Export Citation Format

Share Document