scholarly journals Tailoring the magnetic properties of cobalt ferrite nanoparticles using the polyol process

2019 ◽  
Vol 10 ◽  
pp. 1166-1176 ◽  
Author(s):  
Malek Bibani ◽  
Romain Breitwieser ◽  
Alex Aubert ◽  
Vincent Loyau ◽  
Silvana Mercone ◽  
...  

Background: In extrinsically magnetoelectric materials made of two components, the direct magnetoelectric coupling arises from a mechanical strain transmission at the interface due to the shape change of the magnetostrictive component under an external magnetic field. Here, the size of the interface between the two components plays a crucial role. Therefore, the development of nanomaterials exhibiting large surface-to-volume ratios can help to respond to such a requirement. However, the magnetic nanoparticles (NPs) must be highly magnetostrictive and magnetically blocked at room temperature despite their nanometer-size. We describe here the use of the polyol process to synthesize cobalt ferrite (Co x Fe3− x O4) nanoparticles with controlled size and composition and the study of the relationship between size and composition and the magnetic behavior. Methods: We used an improved synthesis of magnetostrictive Co x Fe3− x O4 NPs based on the forced hydrolysis of metallic salts in a polyol solvent, varying the fraction x. Stoichiometric NPs (x = 1) are expected to be highly magnetostrictive while the sub-stoichiometric NPs (particularly for x ≈ 0.7) are expected to be less magnetostrictive but to present a higher magnetocrystalline anisotropy constant, as previously observed in bulk cobalt ferrites. To control the size of the NPs, in order to overcome the superparamagnetic limit, as well as their chemical composition, in order to get the desired magnetomechanic properties, we carried out the reactions for two nominal precursor contents (x = 1 and 0.67), using two different solvents, i.e., triethylene glycol (TriEG) and tetraethylene glycol (TetEG), and three different durations of refluxing (3, 6 and 15 h). The structure, microstructure and composition of the resulting NPs were then investigated by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray fluorescence spectroscopy (XRF), respectively. The magnetic properties were also evaluated using standard magnetometry. To measure the magnetostrictive response of the particles, the particles were sintered to dense pellets on which strain gauges were bonded, measuring the size variation radially, as a function of a dc magnetic field. Findings: We found two samples, the first one being stoichiometric and magnetostrictive, and the second one being sub-stoichiometric and presenting a higher magnetization, that are appropriate to be used as ferromagnetic building blocks in nanostructured magnetoelectric materials, particularly materials based on polymers. We show that the polyol solvent and the reaction time are two key parameters to control the size and the magnetic properties of the resulting nanoparticles. We believe that these results provide relevant insights to the design of efficient magnetic and magnetostrictive nanoparticles that can be further functionalized by coupling agents, to be contacted with piezoelectric polymers.

2021 ◽  
Vol 7 (3) ◽  
pp. 38
Author(s):  
Roshni Yadav ◽  
Chun-Hsien Wu ◽  
I-Fen Huang ◽  
Xu Li ◽  
Te-Ho Wu ◽  
...  

In this study, [Co/Ni]2/PtMn thin films with different PtMn thicknesses (2.7 to 32.4 nm) were prepared on Si/SiO2 substrates. The post-deposition perpendicular magnetic field annealing (MFA) processes were carried out to modify the structures and magnetic properties. The MFA process also induced strong interlayer diffusion, rendering a less sharp interface between Co and Ni and PtMn layers. The transmission electron microscopy (TEM) lattice image analysis has shown that the films consisted of face-centered tetragonal (fct) PtMn (ordered by MFA), body-centered cubic (bcc) NiMn (due to intermixing), in addition to face-centered cubic (fcc) Co, Ni, and PtMn phases. The peak shift (2-theta from 39.9° to 40.3°) in X-ray diffraction spectra also confirmed the structural transition from fcc PtMn to fct PtMn after MFA, in agreement with those obtained by lattice images in TEM. The interdiffusion induced by MFA was also evidenced by the depth profile of X-ray photoelectron spectroscopy (XPS). Further, the magnetic properties measured by vibrating sample magnetometry (VSM) have shown an increased coercivity in MFA-treated samples. This is attributed to the presence of ordered fct PtMn, and NiMn phases exchange coupled to the ferromagnetic [Co/Ni]2 layers. The vertical shift (Mshift = −0.03 memu) of the hysteresis loops is ascribed to the pinned spins resulting from perpendicular MFA processes.


1991 ◽  
Vol 05 (21) ◽  
pp. 1447-1456 ◽  
Author(s):  
A. R. HARUTUNYAN ◽  
L. S. GRIGORYAN ◽  
A. S. KUZANYAN ◽  
A. A. KUZNETSOV ◽  
A. A. TERENTIEV ◽  
...  

Two samples of benzene-treated Bi–Pb–Sr–Ca–Cu–O powder exhibited at 300 K magnetic field dependent diamagnetism and magnetization irreversibility. The treatment with benzene resulted also in the appearance of microwave absorption at low magnetic fields, while is sensitive to magnetic history of the sample. From X-ray diffraction data one can see that upon benzene treatment the reflections of 85 K and 110 K phases do not change practically, but a series of new reflections appeared, indicating a lattice modulation with 4.9 nm periodicity. A microprobe analysis revealed substantial inhomogeneity of chemical composition across the samples. The room temperature anomalies were weakened in one sample and vanished in the second upon thermal cycling.


2013 ◽  
Vol 334-335 ◽  
pp. 19-25 ◽  
Author(s):  
S. Rostamzadehmansoor ◽  
Mirabdullah Seyed Sadjadi ◽  
K. Zare ◽  
Nazanin Farhadyar

Magnetic oxide nanoparticles with proper surface coatings are increasingly being evaluated for clinical applications such as hyperthermia, drug delivery, magnetic resonance imaging, transfection and cell/protein separations. In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and manganese doped cobalt ferrite nanoparticles (Mnx-Co1-xFe2O4 with x = 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated by the Stober process in directly ethanol. The composition, phase structure and morphology of the prepared core/shell cobalt ferrites nanostructures were characterized by powder X-ray diffraction (XRD), Fourier Transform infra-red spectra (FTIR), Field Emission Scanning Electron Microscopy and energy dispersive X-ray analysis (FESEM-EDAX). The results revealed that all the samples maintain the ferrite spinel structure. While, the cell parameters decrease monotonically by increase of Mn content indicating that the Mn ions are substituted into the lattice of CoFe2O4. The magnetic properties of the prepared samples were investigated at room temperature using Vibrating Sample Magnetometer (VSM). The results revealed a strong dependence of room temperature magnetic properties on (1) doping content, x; (2) particle size and ion distributions.


The magnetic properties of crystalline rock and fines returned by the Apollo 12 mission have been measured. The fines contain at least 0.7% by mass of native iron, mainly in the super- paramagnetic form at room temperature. Native iron is present in the crystalline rock but in a much lower concentration. The paramagnetic minerals, ilmenite and ulvöspinel, are present. Some evidence has been obtained that magnetite is present in the crystalline rock, less than 0.02% by mass. It has not yet been established whether it is indigenous to the rock. Two samples exhibit a change in n.r.m. at low temperature consistent with this n.r.m. being carried by magnetite, but these investigations are not yet complete. The crystalline rocks possess an n.r.m. of intermediate stability: there is evidence for two components of magnetization, a weak and rather stable one, and a less stable but stronger component. The former indicates the presence of a magnetic field on the moon at the time of formation of the rocks. An external origin seems unlikely: thus the Moon possessed a magnetic field of internal origin 3400 Ma§ ago which has since decayed.


2014 ◽  
Vol 24 (3S1) ◽  
pp. 90-94 ◽  
Author(s):  
Le Tuan Tu ◽  
Luu Van Thiem ◽  
Pham Duc Thang

The magnetic properties in Co-Ni-P nanowires arrays with diameter of 200 nm were investigated. All the samples were prepared by electrodeposition method with pH of 5.5 and at room temperature. During the deposition, a magnetic field in range of 0 - 750 Oe was applied parallel to the wires axis. The crystalline structure and morphology of the samples were characterized by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The hysteresis loops were measured at room temperature using vibrating sample magnetometry (VSM). The mixture of hcp phases of the Co-Ni-P based nanowires has been indicated by the XRD pattern. The obtained results show that with 750 Oe magnetic field applied during deposition we can obtain maximum coercivity value (2180 Oe). The \(M_{r}/M_{s}\) ratio was rapid increased when the magnetic field changed from 0 Oe to 750 Oe.


2009 ◽  
Vol 155 ◽  
pp. 163-172
Author(s):  
R.K. Singhal ◽  
M.S. Dhawan ◽  
S.K. Gaur ◽  
Elisa Saitovitch

ZnO semiconductor doped with a few per cent of some transition metal ions can exhibit above room temperature ferromagnetism, transforming it into a very promising candidate for future spin-electronic applications. In the present article we have compared the electronic structure of two polycrystalline ZnMnO pellets doped with diluted Mn concentration (2% and 4%), carefully characterized by SQUID and XRD, including Rietveld refinement. The characterization measurements established that the samples have the ZnO lattice with ZnS type Wurtzite hexagonal symmetry and no detectable impurities. The samples exhibit distinctly different magnetic properties. The 2% sample displayed a clear FM ordering at 300 K while the 4% sample did not show any ordering down to 5K. The electronic structure of these two samples has been investigated using Mn L23 x-ray absorption spectroscopy, Zn 2p and 3p, Mn 3p and O 1s x-ray photoemission spectroscopy. Our aim was to find out how the changes in the electronic structure can correlate to the observed magnetic properties in such diluted magnetic semiconductor materials. The results show that most of the Mn ions of the ferromagnetic sample are in the divalent state. For the higher Mn percent nonmagnetic sample, a larger contribution of higher oxidation Mn states are dominant and the oxygen content also increases. The two factors can be correlated to the suppressed ferromagnetism, though it is hard to pinpoint that which of these two weighs more in the suppression mechanism.


2013 ◽  
Vol 744 ◽  
pp. 315-318
Author(s):  
Wei Rao ◽  
Ding Guo Li ◽  
Hong Chun Yan

Cobalt ferrite (CoFe2O4) thin films have been prepared on Si (001) substrates, with different calcined temperatures (Tcal=400°C~800°C). The films structure was studied by X-ray diffraction (XRD) and their surface was examined by scanning electron microscopy (SEM). The magnetic properties were measured with a vibrating sample magnetometer (VSM). For low calcined temperatures, the films presented a mixture of a CoFe2O4phase, with the cubic spinel structure, and cobalt and iron antiferromagnet oxides with CoO and FeO stoichiometries. As the calcined temperature increased, the CoO and FeO relative content strongly decreased, so that for Tcal=800°Cthe films were composed mainly by polycrystalline CoFe2O4. The magnetic hysteresis cycles measured in the films were horizontally shifted due to an exchange coupling field originated by the presence of the antiferromagnetic phases.


Open Physics ◽  
2011 ◽  
Vol 9 (2) ◽  
Author(s):  
Karol Załęski ◽  
Janusz Dubowik ◽  
Iwona Gościańska ◽  
Bartłomiej Andrzejewski ◽  
Tomasz Toliński

AbstractIn this paper we report structural, magnetic and transport properties of strongly textured Ni51Mn36Sn13 thin films. The off-stoichiometric Heusler alloy films with 200 nm thickness were sputter-deposited on a MgO(100) substrate at 500 K and after annealed at 1000 K in UHV conditions. The textured growth was confirmed by x-ray diffraction in Bragg-Brentano geometry. The temperature dependence of the magnetic properties was measured by VSM and FMR methods. The electron transport measurements were carried out in function of temperature in 0 Oe and 50 kOe fields. All measurements corroborate the existence of the martensitic transformation in the film. Furthermore, transport measurements reveal an influence of the magnetic field on the transition temperature.


2009 ◽  
Vol 152-153 ◽  
pp. 7-10 ◽  
Author(s):  
Irina S. Tereshina ◽  
S.A. Nikitin ◽  
G.A. Politova ◽  
A.S. Ilyushin ◽  
A.A. Opolenko ◽  
...  

In this work, the structural and magnetic properties of single-phase TbxDyyHoz(Fe,Co)2 (x + y + z = 1) alloys have been investigated by means of X-ray diffraction, 57Fe Mossbauer spectroscopy, magnetization measurements and a standard strain gage technique. The magnetostriction of TbxDyyHoz(Fe,Co)2 was examined against an applied magnetic field up to 10 kOe in 80 - 400 K temperature range. The Co-containing compounds are found to have high values of magnetostrictive susceptibility due to compensation of magnetic anisotropy in both the rare-earth and 3d transition metals sublattices.


2012 ◽  
Vol 535-537 ◽  
pp. 959-963
Author(s):  
Li Na Bai ◽  
Gui Xing Zheng ◽  
Jing Xin ◽  
Jian Jun Zhang

The influences of Gd concentration on martensitic transformation and magnetic properties of NiMnIn alloys were investigated by differential scanning calorimetry (DSC) , vibrating sample magnetometry (VSM), X-ray diffraction (XRD) and etc. It shows that addition of Gd enhances martensite transition temperature and that X-ray diffraction analysis of experimental alloys is revealed which the mixture is martensite and austenite at room temperature. These alloys show promise as a metamagnetic shape memory alloy with magnetic-field-induced shape memory effect.


Sign in / Sign up

Export Citation Format

Share Document