scholarly journals Extracting viscoelastic material parameters using an atomic force microscope and static force spectroscopy

2020 ◽  
Vol 11 ◽  
pp. 922-937 ◽  
Author(s):  
Cameron H Parvini ◽  
M A S R Saadi ◽  
Santiago D Solares

Atomic force microscopy (AFM) techniques have provided and continue to provide increasingly important insights into surface morphology, mechanics, and other critical material characteristics at the nanoscale. One attractive implementation involves extracting meaningful material properties, which demands physically accurate models specifically designed for AFM experimentation and simulation. The AFM community has pursued the precise quantification and extraction of rate-dependent material properties, in particular, for a significant period of time, attempting to describe the standard viscoelastic response of materials. AFM static force spectroscopy (SFS) is one approach commonly used in pursuit of this goal. It is capable of acquiring rich temporal insight into the behavior of a sample. During AFM-SFS experiments the cantilever base approaches samples with a nearly constant velocity, which is manipulated to investigate different timescales of the mechanical response. This manuscript seeks to build upon our previous work and presents an approach to extracting useful linear viscoelastic information from AFM-SFS experiments. In addition, the basis for selecting and restricting the model parameters for fitting is discussed from the perspective of applying this technique on a practical level. This work begins with a guided discussion that develops a fit function from fundamental laws, continues with conditioning a raw SFS experimental dataset, and concludes with the fit and prediction of viscoelastic response parameters such as storage modulus, loss modulus, loss angle, and compliance. These steps constitute a complete guide to leveraging AFM-SFS data to estimate key material parameters, with a series of detailed insights into both the methodology and supporting analytical choices.

2004 ◽  
Vol 92 (2) ◽  
pp. 1236-1240 ◽  
Author(s):  
P. Grigg ◽  
D. R. Robichaud ◽  
Z. Del Prete

When skin is stretched, stimuli experienced by a cutaneous mechanoreceptor neuron are transmitted to the nerve ending through the skin. In these experiments, we tested the hypothesis that the viscoelastic response of the skin influences the dynamic response of cutaneous rapidly adapting (RA) neurons. Cutaneous RA afferent neurons were recorded in 3 species of mice (Tsk, Pallid, and C57BL6) whose skin has different viscoelastic properties. Isolated samples of skin and nerve were stimulated mechanically with a dynamic stretch stimulus, which followed a pseudo Gaussian waveform with a bandwidth of 0–60 Hz. The mechanical response of the skin was measured as were responses of single RA cutaneous mechanoreceptor neurons. For each neuron, the strength of association between spike responses and the dynamic and static components of stimuli were determined with multiple logistic regression analysis. The viscoelastic material properties of each skin sample were determined indirectly, by creating a nonlinear (Wiener–Volterra) model of the stress–strain relationship, and using the model to predict the complex compliance (i.e., the viscoelastic material properties). The dynamic sensitivity of RA mechanoreceptor neurons in mouse hairy skin was weakly related to the viscoelastic properties of the skin. Loss modulus and phase angle were lower (indicating a decreased viscous component of response) in Tsk and Pallid than in C57BL6 mice. However, RA mechanoreceptor neurons in Tsk and Pallid skin did not differ from those in C57 skin with regard to their sensitivity to the rate of change of stress or to the rate of change of incremental strain energy. They did have a decreased sensitivity to the rate of change of tensile strain. Thus the skin samples with lower dynamic mechanical response contained neurons with a somewhat lower sensitivity to dynamic stimuli.


Author(s):  
Alexander K. Landauer ◽  
Philip A. Yuya ◽  
Laurel Kuxhaus

Cancellous bone is an important load-bearing component of whole bone, and due to the plate-and-rod nature of trabeculae, small-scale testing is required to measure material parameters for use in modern analytic techniques such as finite element modeling [1, 2]. These material properties are measurable via nanoindentation techniques. During nanoindentation, the indenter tip is forced into the surface of the material while the applied load and tip displacement are monitored. Using these data, along with the tip’s cross-sectional area, mechanical properties are determined. Dynamic testing quantifies viscoelastic response and can obtain material response parameters such as storage and loss moduli. During dynamic testing, a low magnitude sinusoidal force is superimposed on a constant static force. The displacement response is measured at the same frequency as the applied oscillating force, and the resulting phase lag is related to material damping [3].


Aerospace ◽  
2006 ◽  
Author(s):  
Julianna Evans ◽  
Diann Brei ◽  
Jonathan Luntz

Nature builds an immense set of materials exhibiting a wide range of behaviors using only a small number of basic compounds. The range of materials comes about through architecture, giving functional structure to the basic materials. Analogously, a new genre of actuators can be derived from existing smart materials through architecture. This paper presents a preliminary experimental study of knitted actuation architectures that yield high strains (up to 73%) with moderate forces (tens of Newtons or more) from basic contracting smart material fibers. By different combinations of the two primary knit loops – purl and knit – a variety of behaviors can be achieved including contraction, rolling, spirals, accordions, arching, and any combination of these across the fabric. This paper catalogs several basic knit stitches and their actuated form: garter, stockinette, seed, rib and I-cord. These knitted architectures provide performance tailorability (force, strain, stiffness, and motion) by manipulation of key design parameters such as the material properties of the wire, the geometric parameters (wire diameter, loop size, and gauge), and architectural parameters (stitch type and orientation). This is demonstrated via a quasi-static force-deflection experimental study with several shape memory alloy garter prototypes with varying geometric parameters. While the basic architecture of a knit is simple, it affords a vast array of architectural combinations and control of geometrical and material parameters that generate a myriad of gross motion capabilities beyond that of current day actuation strategies.


2006 ◽  
Vol 129 (3) ◽  
pp. 450-456 ◽  
Author(s):  
Esra Roan ◽  
Kumar Vemaganti

The mechanical response of soft tissue is commonly characterized from unconfined uniaxial compression experiments on cylindrical samples. However, friction between the sample and the compression platens is inevitable and hard to quantify. One alternative is to adhere the sample to the platens, which leads to a known no-slip boundary condition, but the resulting nonuniform state of stress in the sample makes it difficult to determine its material parameters. This paper presents an approach to extract the nonlinear material properties of soft tissue (such as liver) directly from no-slip experiments using a set of computationally determined correction factors. We assume that liver tissue is an isotropic, incompressible hyperelastic material characterized by the exponential form of strain energy function. The proposed approach is applied to data from experiments on bovine liver tissue. Results show that the apparent material properties, i.e., those determined from no-slip experiments ignoring the no-slip conditions, can differ from the true material properties by as much as 50% for the exponential material model. The proposed correction approach allows one to determine the true material parameters directly from no-slip experiments and can be easily extended to other forms of hyperelastic material models.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110106
Author(s):  
Jing Yang ◽  
Ming Hu ◽  
Zejie Han ◽  
Deming Zhao ◽  
Tao Qin

Accurate description of the mechanical properties for soft tissues can help surgeon predict the state during surgery. In unconfined compression tests (UCT) of soft tissue, a tiny force is typically applied to determine the starting position of compression. The preloading force will cause the obtained material parameters to deviate from the real parameters. In this paper, a novel elimination method was proposed to eliminate the effect of the preloading force. The effects of preloading force on mechanical response were analyzed by performing unconfined compression numerical tests. Different preloading force were applied in the simulation. The parameters obtained by traditional optimization method were defined as preloading material parameters. In the proposed method, an estimation model between the preloading material parameters and the preloading force was established to estimate real parameters. The proposed elimination method was verified by three sample diameters and material parameters. The results show that the material parameters obtained by proposed method are closer to the real parameters (estimated accuracy exceeds 97%). The proposed method can obtain more accurate constitutive model parameters, and eliminate the effect of preloading force.


Micron ◽  
2021 ◽  
Vol 145 ◽  
pp. 103062
Author(s):  
Agnieszka Maria Kolodziejczyk ◽  
Paulina Sokolowska ◽  
Aleksandra Zimon ◽  
Magdalena Grala ◽  
Marcin Rosowski ◽  
...  

2020 ◽  
Vol 6 (3) ◽  
pp. 111-114
Author(s):  
Jack Wilkie ◽  
Paul D. Docherty ◽  
Knut Möller

AbstractINTRODUCTION: A torque-rotation model of the bone-screwing process has been proposed. Identification of model parameters using recorded data could potentially be used to determine the material properties of bone. These properties can then be used to recommend tightening torques to avoid over or under-tightening of bone screws. This paper improves an existing model to formulate it in terms of material properties and remove some assumptions. METHOD: The modelling methodology considers a critical torque, which is required to overcome friction and advance the screw into the bone. Below this torque the screw may rotate with elastic deformation of the bone tissue, and above this the screw moves relative to the bone, and the speed is governed by a speed-torque model of the operator’s hand. The model is formulated in terms of elastic modulus, ultimite tensile strength, and frictional coefficient of the bone and the geometry of the screw and hole. RESULTS: The model output shows the speed decreasing and torque increasing as the screw advances into the bone, due to increasing resistance. The general shape of the torque and speed follow the input effort. Compared with the existing model, this model removes the assumption of viscous friction, models the increase in friction as the screw advances into the bone, and is directly in terms of the bone material properties. CONCLUSION: The model presented makes significant improvements on the existing model. However it is intended for use in parameter identification, which was not evaluated here. Further simulation and experimental validation is required to establish the accuracy and fitness of this model for identifying bone material properties.


Sign in / Sign up

Export Citation Format

Share Document