scholarly journals Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

2012 ◽  
Vol 3 ◽  
pp. 637-650 ◽  
Author(s):  
Mehmet Z Baykara ◽  
Omur E Dagdeviren ◽  
Todd C Schwendemann ◽  
Harry Mönig ◽  
Eric I Altman ◽  
...  

Noncontact atomic force microscopy (NC-AFM) is being increasingly used to measure the interaction force between an atomically sharp probe tip and surfaces of interest, as a function of the three spatial dimensions, with picometer and piconewton accuracy. Since the results of such measurements may be affected by piezo nonlinearities, thermal and electronic drift, tip asymmetries, and elastic deformation of the tip apex, these effects need to be considered during image interpretation. In this paper, we analyze their impact on the acquired data, compare different methods to record atomic-resolution surface force fields, and determine the approaches that suffer the least from the associated artifacts. The related discussion underscores the idea that since force fields recorded by using NC-AFM always reflect the properties of both the sample and the probe tip, efforts to reduce unwanted effects of the tip on recorded data are indispensable for the extraction of detailed information about the atomic-scale properties of the surface.

2002 ◽  
Vol 81 (23) ◽  
pp. 4428-4430 ◽  
Author(s):  
H. Hölscher ◽  
S. M. Langkat ◽  
A. Schwarz ◽  
R. Wiesendanger

2000 ◽  
Vol 6 (S2) ◽  
pp. 970-971
Author(s):  
S. J. Eppell ◽  
B. A. Todd ◽  
F. R. Zypman

The interaction of surfaces with their surroundings can be described as arising from force fields generated by molecules at the surface of interest. This statement is true for electrostatic interactions of proteins on cell membranes as well as steric interactions of macromolecules on polymer surfaces. To better understand these systems and ultimately to design superior materials, it is necessary to make direct measurements of these near-surface molecular scale force fields. Scanning force microscopy (SFM) holds some promise in the endeavor to make surface force measurements in a full three dimensional submolecularly resolved space. In-vitro measurements present a problem in that the force fields tend to be very short ranged. This necessitates placing the SFM probe very near the surface in order to measure the fields. The ubiquitous van der Waals attraction tends to induce an instability in the SFM instrument under these conditions leading to a non-equilibrium state. We have carefully examined this state of affairs and found that it is essential to use a substantially more sophisticated method to analyze SFM data than is commonly performed.


Microscopy ◽  
2020 ◽  
Vol 69 (6) ◽  
pp. 340-349
Author(s):  
Takeshi Fukuma

Abstract In-liquid frequency modulation atomic force microscopy (FM-AFM) has been used for visualizing subnanometer-scale surface structures of minerals, organic thin films and biological systems. In addition, three-dimensional atomic force microscopy (3D-AFM) has been developed by combining it with a three-dimensional (3D) tip scanning method. This method enabled the visualization of 3D distributions of water (i.e. hydration structures) and flexible molecular chains at subnanometer-scale resolution. While these applications highlighted the unique capabilities of FM-AFM, its force resolution, speed and stability are not necessarily at a satisfactory level for practical applications. Recently, there have been significant advancements in these fundamental performances. The force resolution was dramatically improved by using a small cantilever, which enabled the imaging of a 3D hydration structure even in pure water and made it possible to directly compare experimental results with simulated ones. In addition, the improved force resolution allowed the enhancement of imaging speed without compromising spatial resolution. To achieve this goal, efforts have been made for improving bandwidth, resonance frequency and/or latency of various components, including a high-speed phase-locked loop (PLL) circuit. With these improvements, now atomic-resolution in-liquid FM-AFM imaging can be performed at ∼1 s/frame. Furthermore, a Si-coating method was found to improve stability and reproducibility of atomic-resolution imaging owing to formation of a stable hydration structure on a tip apex. These improvements have opened up new possibilities of atomic-scale studies on solid-liquid interfacial phenomena by in-liquid FM-AFM.


Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
N. D. Browning ◽  
M. M. McGibbon ◽  
M. F. Chisholm ◽  
S. J. Pennycook

The recent development of the Z-contrast imaging technique for the VG HB501 UX dedicated STEM, has added a high-resolution imaging facility to a microscope used mainly for microanalysis. This imaging technique not only provides a high-resolution reference image, but as it can be performed simultaneously with electron energy loss spectroscopy (EELS), can be used to position the electron probe at the atomic scale. The spatial resolution of both the image and the energy loss spectrum can be identical, and in principle limited only by the 2.2 Å probe size of the microscope. There now exists, therefore, the possibility to perform chemical analysis of materials on the scale of single atomic columns or planes.In order to achieve atomic resolution energy loss spectroscopy, the range over which a fast electron can cause a particular excitation event, must be less than the interatomic spacing. This range is described classically by the impact parameter, b, which ranges from ~10 Å for the low loss region of the spectrum to <1Å for the core losses.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 655
Author(s):  
Alisher M. Kariev ◽  
Michael E. Green

There are reasons to consider quantum calculations to be necessary for ion channels, for two types of reasons. The calculations must account for charge transfer, and the possible switching of hydrogen bonds, which are very difficult with classical force fields. Without understanding charge transfer and hydrogen bonding in detail, the channel cannot be understood. Thus, although classical approximations to the correct force fields are possible, they are unable to reproduce at least some details of the behavior of a system that has atomic scale. However, there is a second class of effects that is essentially quantum mechanical. There are two types of such phenomena: exchange and correlation energies, which have no classical analogues, and tunneling. Tunneling, an intrinsically quantum phenomenon, may well play a critical role in initiating a proton cascade critical to gating. As there is no classical analogue of tunneling, this cannot be approximated classically. Finally, there are energy terms, exchange and correlation energy, whose values can be approximated classically, but these approximations must be subsumed within classical terms, and as a result, will not have the correct dependence on interatomic distances. Charge transfer, and tunneling, require quantum calculations for ion channels. Some results of quantum calculations are shown.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 127
Author(s):  
YongChao Wang ◽  
YinBo Zhu ◽  
HengAn Wu

The porous characteristics of disordered carbons are critical factors to their performance on hydrogen storage and electrochemical capacitors. Even though the porous information can be estimated indirectly by gas adsorption experiments, it is still hard to directly characterize the porous morphology considering the complex 3D connectivity. To this end, we construct full-atom disordered graphene networks (DGNs) by mimicking the chlorination process of carbide-derived carbons using annealing-MD simulations, which could model the structure of disordered carbons at the atomic scale. The porous characteristics, including pore volume, pore size distribution (PSD), and specific surface area (SSA), were then computed from the coordinates of carbon atoms. From the evolution of structural features, pores grow dramatically during the formation of polyaromatic fragments and sequent disordered framework. Then structure is further graphitized while the PSD shows little change. For the obtained DGNs, the porosity, pore size, and SSA increase with decreasing density. Furthermore, SSA tends to saturate in the low-density range. The DGNs annealed at low temperatures exhibit larger SSA than high-temperature DGNs because of the abundant free edges.


Author(s):  
Jean-Numa Gillet ◽  
Yann Chalopin ◽  
Sebastian Volz

Owing to their thermal insulating properties, superlattices have been extensively studied. A breakthrough in the performance of thermoelectric devices was achieved by using superlattice materials. The problem of those nanostructured materials is that they mainly affect heat transfer in only one direction. In this paper, the concept of canceling heat conduction in the three spatial directions by using atomic-scale three-dimensional (3D) phononic crystals is explored. A period of our atomic-scale 3D phononic crystal is made up of a large number of diamond-like cells of silicon atoms, which form a square supercell. At the center of each supercell, we substitute a smaller number of Si diamond-like cells by other diamond-like cells, which are composed of germanium atoms. This elementary heterostructure is periodically repeated to form a Si/Ge 3D nanostructure. To obtain different atomic configurations of the phononic crystal, the number of Ge diamond-like cells at the center of each supercell can be varied by substitution of Si diamond-like cells. The dispersion curves of those atomic configurations can be computed by lattice dynamics. With a general equation, the thermal conductivity of our atomic-scale 3D phononic crystal can be derived from the dispersion curves. The thermal conductivity can be reduced by at least one order of magnitude in an atomic-scale 3D phononic crystal compared to a bulk material. This reduction is due to the decrease of the phonon group velocities without taking into account that of the phonon average mean free path.


2012 ◽  
Vol 18 (5) ◽  
pp. 1129-1134 ◽  
Author(s):  
Sophie Cazottes ◽  
François Vurpillot ◽  
Abdeslem Fnidiki ◽  
Dany Lemarchand ◽  
Marcello Baricco ◽  
...  

AbstractThe microstructure of Cu80Fe10Ni10 (at. %) granular ribbons was investigated by means of three-dimensional field ion microscopy (3D FIM). This ribbon is composed of magnetic precipitates embedded in a nonmagnetic matrix. The magnetic precipitates have a diameter smaller than 5 nm in the as-spun state and are coherent with the matrix. No accurate characterization of such a microstructure has been performed so far. A tomographic characterization of the microstructure of melt spun and annealed Cu80Fe10Ni10 ribbon was achieved with 3D FIM at the atomic scale. A precise determination of the size distribution, number density, and distance between the precipitates was carried out. The mean diameter for the precipitates is 4 nm in the as-spun state. After 2 h at 350°C, there is an increase of the size of the precipitates, while after 2 h at 400°C the mean diameter of the precipitates decreases. Those data were used as inputs in models that describe the magnetic and magnetoresistive properties of this alloy.


Sign in / Sign up

Export Citation Format

Share Document