scholarly journals THE BRIQUETTES PROPERTIES FROM SEED SUNFLOWER HUSK AND WOOD LARCH SHAVINGS

Wood Research ◽  
2021 ◽  
Vol 66 (4) ◽  
pp. 689-699
Author(s):  
DRĂGUŞANU VERONICA ◽  
AUREL LUNGULEASA ◽  
SPÎRCHEZ COSMIN

The paper aims to use the residue of sunflower seed hulls to obtain organic briquettes and to improve their properties by using larch shavings obtained in the process of solid wood planning. The physical-mechanical properties of briquettes made on a hydraulic machine, calorific value, ash content and volatile content were evaluated. The obtain results highlighted the briquettes obtained from larch waste, but also the acceptable characteristics of the briquettes obtained from sunflower seed husks. The main conclusions of this study is that briquettes obtained from unprocessed sunflower seed husks are acceptable in terms of physical-mechanical and calorific characteristics, even if they do not reach the level of briquettes obtained from larch shavings.

2017 ◽  
Vol 2 (1) ◽  
pp. 43 ◽  
Author(s):  
Lilih Sulistyaningkarti ◽  
Budi Utami

This study aimed to (1) make charcoal briquettes from corncobs organic waste; (2) determine the right type of adhesive to make a corncobs charcoal briquette to produce good quality briquettes; (3) determine the appropriate percentage of adhesive to produce corncobs briquettes to produce good quality briquettes; and (4) know the best characteristics of corncobs charcoal briquettes which include moisture content, volatile content, ash content, carbon content and caloric value. The sample used was corncob obtained from a corn farmer in Pasekan Village, Wonogiri regency. This research used experimental method in laboratory with several stages, namely: (1) preparation of materials; (2) carbonization; (3) crushing and sifting of charcoal (4) mixing charcoal with adhesive and water; (5) briquetting; (6) briquette drying; And (7) analysis of briquette quality. This adhesive types used in this research were tapioca flour and wheat flour and the percentage of adhesive material were 5%, 10% and 15% from total weight of charcoal powder. The result of the research were: (1) charcoal briquettes as alternative energy source can be made from biomass waste (corncobs organic waste); (2) charcoal briquettes from organic corncobs wastes using tapioca flour adhesives have better quality than using wheat flour adhesives; (3) the both charcoal briquettes using 5% of tapioca flour adhesive and 5% wheat flour adhesives have better quality than 10% and 15% in terms of moisture content, volatile content, ash content, carbon content and calorific value; and (4) the best characteristics obtained are for the charcoal briquettes using 5% of tapioca flour adhesive, which have water content of 3,665%; volatile matter amounting of 11.005%; ash content of 4.825%; fixed carbon content of 80.515%; and high heat value of 5661,071%.


2019 ◽  
Vol 13 (1) ◽  
pp. 57
Author(s):  
Syarifhidayahtullah Syarif ◽  
Rochim Bakti Cahyono ◽  
Muslikhin Hidayat

A B S T R A C TThe conversion of cocoa shell waste into char briquettes has been carried out through various methods. However, the product characteristics do not meet the SNI briquettes requirements. Therefore, it is necessary to improve process engineering by mixing cocoa peel waste with red fruit pulp to get char briquettes in order to improve quality of briquette products. This research was carried out through pyrolysis process with temperthwatures up to 500 oC and held for 4 hours. The research objective was to produce char briquettes from cacao pod shell waste with the addition of red fruit pulp and its characteristic test. The study was designed with 2 variables, namely independent variables in the form of char raw material powder that passed 50 mesh sieve, weight ratio of cocoa shell char powder and red fruit pulp char powder (100:0, 70:30, 50:50, 30:70, and 0%:100%), pressure (100 kg/cm2), 10% starch adhesive from raw materials, and briquette diameter of 40 mm. Whereas the dependent variables are the moisture content (%), volatile content (%), ash content (%), fixed carbon content (%), and calorific value (cal/g). The results showed that the process of pyrolysis of char briquettes waste cocoa shell with red fruit pulp can increase its calorific value. The best characteristics of briquette were obtained from mixed briquettes (composition of 30%:70%) with moisture content of 5.63%, volatile content of 18.65%, ash content of 9.45%, fixed carbon content of 66.27%, and calorific value of 6422 cal/g.A B S T R A KPemanfaatan limbah kulit buah kakao menjadi briket arang telah banyak dilakukan melalui berbagai metode tetapi belum memenuhi persyaratan SNI briket arang. Oleh karena itu, perlu diupayakan untuk mendapatkan briket arang yang memenuhi persyaratan SNI. Salah satunya dengan cara mencampurkan limbah kulit kakao dengan ampas buah merah karena ampas buah merah memiliki nilai kalor yang cukup tinggi. Penelitian ini dilakukan melalui proses pirolisis dengan suhu sampai dengan 500 oC  dan ditahan selama 4 jam. Tujuan penelitian untuk memproduksi briket arang dari limbah kulit buah kakao dengan penambahan ampas buah merah serta uji karakteristiknya. Penelitian dirancang dengan 2 variabel, yaitu variabel bebas (independent variable) berupa ukuran serbuk bahan baku arang yang lolos saringan  50 mesh, rasio massa campuran serbuk arang kulit kakao dengan serbuk arang ampas buah merah (100:0, 70:30, 50:50, 30:70, dan 0%:100%), tekanan pengempaan (100 kg/cm2), perekat kanji 10% dari bahan baku, dan diameter briket 40 mm. Variabel terikat (dependent variable) yang diukur yaitu kadar air (%), kadar zat mudah menguap (%), kadar abu (%), kadar karbon terikat (%), dan nilai kalor (kal/g). Hasil penelitian menunjukkan bahwa, dengan melalui proses pirolisis briket arang limbah kulit kakao dengan ampas buah merah dapat meningkatkan nilai kalor-nya. Karakteristik briket terbaik diperoleh dari briket komposisi campuran (30%:70%) dengan kadar air 5,63 %, kadar zat mudah menguap 18,65 %, kadar abu 9,45 %, kadar karbon terikat 66,27 %, dan nilai kalor 6422 kal/g.


2019 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Mutiara Fadila Rania ◽  
I Gede Eka Lesmana ◽  
Eka Maulana

The garbage dumping in Tegal Regency has reached 989.8 m3/day and increasing every year. The percentage of waste in Murareja landfill is dominated by plastic waste which is 40.15%. The plastic waste will be processed by pyrolysis by utilizing Refuse Derived Fuel (RDF) as its fuel. The percentage of garbage in Murareja TPA that can be used as RDF is quite high, which is 28.7%, consisting of 15.35% paper waste, 2.35% rubber / leather waste, 2% garbage cloth, 1% wood waste, and 8% plastic waste. The waste is considered potentially to be produced into RDF. The production of RDF aims to convert the combustible waste fraction from 4K1P waste (Paper, Wood, Fabrics, Rubber / Leather and Plastics) to be fueled. Therefore it is important to know how much potential of 4K1P waste to be processed into RDF, and how optimal calorific value of RDF is to be used as fuel of pyrolysis incinerator on Waste Power Generation at Murareja TPA, Tegal regency. Based on the result of the research that has been done, the theoretical value of the theoretical value of 4K1P RDF briquette is 3677.0945 - 5507.114 [kcal / kg]. From the actual data obtained with laboratory testing the value of RDF beverage caloric waste 4K1P RDF amounted to 3973.45 [kCal / kg]. The optimal calorific value of RDF required as a pyrolysis incinerator fuel is 3248.809 [kcal / kg]. Based on the results of laboratory tests, the percentage of moisture content, ash content, volatile content and carbon content are 4.68%, 11.64%, 7.81% and 75.87% respectively.


2020 ◽  
pp. 292-292
Author(s):  
Nugroho Pambudi ◽  
Panji Ardiyansyah ◽  
Riina Syivarulli ◽  
Muhammad Biddinika ◽  
Mochamad Syamsiro ◽  
...  

Hydrothermal carbonization (HTC) is a thermochemical process used in converting biomass into a coal-like substance known as hydrochar. This is usually carried out at high temperature with water below the saturation pressure for a certain period known as holding time. The biomass used was soybean dregs, which is the residue obtained from processing soy sauce with low economic value. The aim of this study therefore was to determine the calorific value of the hydrochar produced from soybean dregs at hydrothermal carbonization temperatures of 160?C, 190?C, and 220?C and at holding times of 30 and 60 minutes, also at a temperature of 190?C with the biomass and water ratio at 1:4 and 1:5. The results showed that the highest calorific value was produced a temperature of 220?C and a holding time of 60 minutes, which was 3,866 Kcal/Kg, the highest carbon content was 26.49%, the lowest moisture content was at 1.77%, the lowest volatile content was at 62.98%, while the lowest ash content was8.64%. Considering biomass to water ratio with the holding time, the highest calorific value was at 3,546 Kcal/Kg, the highest carbon content was 20.32%, the lowest moisture content at 1.71%, the lowest volatile content was 68.58%, while the lowest ash content was at 8.37%. The highest calorific value of the hydrochar produced was similar to the calorific value standard of lignite coal which is around 3,511-4,611 Kcal/Kg according to the American Standard Testing and Mineral (ASTM).


Author(s):  
Yenni Ruslinda ◽  
Fitratul Husna ◽  
Arum Nabila

This study aims to examine the characteristics of briquettes from fruit waste, HDPE plastic waste, and coconut shell composite, as an alternative fuel. Characteristic tests include physical characteristics (density and compressive strength), chemical characteristics (moisture, volatile content, fixed carbon, ash content, calorific value), and cost calculation for making briquettes. Physical characteristics tests obtained that density is between 0.60 to 0.89 g/cm3 and compressive strength is between 0.88 to 6.87 kg/cm2. Chemical characteristics tests found that water content 5.73 - 9.06%; volatile content 70.02 - 79.92%; fixed carbon 12.39 - 18.41%; ash content of 1.47 - 4.86%, and calorific value 4549 - 7213 cal/g. Cost for making briquettes range between 0.56 to 0.86 rupiahs/kcal. Except for compressive strength parameter, other parameters are in the standard range of biobriquettes quality according to Permen ESDM No. 047 Tahun 2006. Optimum briquette found in this research is a mixture of 20% fruit waste, 20% of plastic waste HDPE, and 60% coconut shell. Briquettes made as a mixture of those three raw material with that composition is optimum as an alternative fuel, because it produces higher calorific value and lower cost. 


2020 ◽  
Vol 12 (6) ◽  
pp. 158
Author(s):  
Silvia Maccari Petricoski ◽  
Armin Feiden ◽  
Adriana Ferla de Oliveira ◽  
Luciene Kazue Tokura ◽  
Jair Antonio Cruz Siqueira ◽  
...  

The briquette is considered a solid biofuel, made from the compaction of lignocellulosic residues used for the generation of energy. This work aimed to study the production of briquettes from mixtures of Urban Pruning Waste (RPU) (pruning of leaves and thin branches of trees), glycerin and cassava bagasse (Manihot esculenta). Samples of RPU, cassava bagasse and glycerol were mixed to yield treatments T1 (100% RPU), T2 (92% RPU and 8% cassava bagasse), T3 (97% RPU and 3% glycerin), T4 (89% RPU, 8% cassava bagasse and 3% Glycerin), T5 (94.5% RPU, 4% cassava bagasse and 1.5% glycerin) and T6 (control). Following this step, physical, chemical and energetic analyses (moisture content, volatile material content, fixed carbon and ash content, superior, inferior and useful calorific value, mechanical resistance, apparent and energetic density) of the briquettes were carried out. Treatment T2 had a lower fixed carbon value and volatile content, as well as higher ash content and mechanical strength. The percentages of carbon, hydrogen and nitrogen did not differ statistically between the treatments. The higher, lower and useful heating values were higher in treatment T3. The results showed that treatments T1, T2 and T3 were more efficient, producing briquettes with properties that meet market specifications, besides presenting great energetic potential, being good substitutes for firewood.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5083-5096
Author(s):  
Cosmin Spirchez ◽  
Veronica Japalela ◽  
Aurel Lunguleasa ◽  
Daniel Buduroi

Sawdust specimens of two Paulownia species, namely Paulownia tomentosa and Paulownia elongata, were evaluated in order to obtain briquettes and pellets. Briquettes and pellets were manufactured from the sawdust, and their physical properties (density), mechanical properties (the resistance of the briquettes to breaking, and the shear resistance of the pellets), and energetic properties (caloric value, black ash content, and calcined ash content) were determined. The densities of the P. elongata and P. tomentosa briquettes were 790 kg/m3 and 934 kg/m3, respectively, while the pellets had densities of 1268 kg/m3 and 1266 kg/m3, respectively. These values were within the standardized limits, and the ash content had good values. The high calorific value of 16815 kJ/kg and the low calorific value of 16669 kJ/kg was acceptable, since they were greater than other vegetable resources. In conclusion, it was found that the two types of wood biomass are suitable for the production of briquettes and pellets, due to their good physical, mechanical, and energetic properties.


2019 ◽  
Vol 3 (3) ◽  
pp. 142-145
Author(s):  
Dwi Sukowati ◽  
Triat Adi Yuwono ◽  
Asti Dewi Nurhayati

AbstraCT[Comparative Analysis of the Quality of Corn Charcoal Briquettes with Teak Leaves Charcoal] This study is a preliminary study that aims to determine the quality of briquettes from different biomass raw materials, namely corncobs and teak leaves. Utilization which is still not maximized from corncobs and teak leaves in the biomass energy field made the initial thought of the study. In addition, both of these raw materials have lignocellulosic contents which are likely to be used as biomass raw materials, especially briquettes. The research method used is an experiment with the research procedure is the manufacture of the two briquettes then the products are analyzed and compared. Both of these raw materials receive the same treatment in the manufacturing process. The composition of the adhesive used is 5% of the main ingredient. The adhesive used is starch. Both briquettes were tested for quality including water content, ash content, volatility, and heating value. The results of testing the water content, ash content, volatile content, the calorific value of corn cobs briquettes and teak leaves charcoal briquettes are, respectively, 3.62% and 5.39% water content; ash content of 4.84% and 3.14%; volatile content of 11.75% and 25.86%; The heating value is 5653.99 cal / g and 7222.95 cal / g. From the results of the analysis, teak leaf charcoal briquettes dominate better quality than corn cobs charcoal briquettes, the water content of teak leaf charcoal briquettes is still higher. When compared with the SNI set value, the two briquettes have met the briquette standards that are suitable to be used as substitutes for alternative fuels.Keywords: Briquette quality; Corn cobs; teak leaves. (Received August 14, 2019; Accepted October 5, 2019; Published October 22, 2019) AbstrakPenelitian ini merupakan penelitian pendahuluan yang bertujuan untuk mengetahui kualitas briket dari bahan baku biomassa yang berbeda yaitu bonggol jagung dan daun jati. Pemanfaatan yang masih belum maksimal dari bonggol jagung dan daun jati di bidang energi biomassa menjadikan pemikiran awal penelitian. Selain  itu, kedua bahan baku ini mempunyai kandungan ligniselulosa yang berpeluang untuk dijadikan bahan baku biomassa khususnya briket. Metode penelitian yang digunakan adalah eksperimen dengan prosedur penelitiannya adalah pembuatan kedua briket kemudian produknya dianalisis dan dibandingkan. Kedua bahan baku ini mendapat perlakuan sama dalam proses pembuatannya. Komposisi perekat yang digunakan sebesar 5% dari bahan utama. Perekat yang digunakan adalah tepung kanji. Kedua briket diuji kualitasnya meliputi kadar air, kadar abu, volatile, dan nilai kalor. Adapun hasil pengujian kadar air, kadar abu, kandungan volatile, nilai kalor dari briket arang bonggol jagung dan briket arang daun jati berturut-turut yaitu, kadar air 3,62% dan 5,39%; kadar abu 4,84% dan 3,14%; kandungan volatile 11,75% dan 25,86%; Nilai kalor 5653,99 kal/g dan 7222,95 kal/g. Dari hasil analisis tersebut, briket arang daun jati mendominasi kualitas yang lebih bagus dibanding dengan briket arang bonggol jagung, kelemahannya kadar air briket arang daun jati masih lebih tinggi. Jika dibandingkan dengan nilai yang telah ditetapkan SNI, kedua briket tersebut telah memenuhi standar briket yang layak digunakan sebagai pengganti bahan bakar alternatif. Kata kunci: Kualitas briket; bonggol jagung; daun jati.


2020 ◽  
Vol 13 (2) ◽  
pp. 105-109
Author(s):  
E. S. Dremicheva

This paper presents a method of sorption using peat for elimination of emergency spills of crude oil and petroleum products and the possibility of energy use of oil-saturated peat. The results of assessment of the sorbent capacity of peat are presented, with waste motor oil and diesel fuel chosen as petroleum products. Natural peat has been found to possess sorption properties in relation to petroleum products. The sorbent capacity of peat can be observed from the first minutes of contact with motor oil and diesel fuel, and significantly depends on their viscosity. For the evaluation of thermal properties of peat saturated with petroleum products, experimental studies have been conducted on determination of moisture and ash content of as-fired fuel. It is shown that adsorbed oil increases the moisture and ash content of peat in comparison with the initial sample. Therefore, when intended for energy use, peat saturated with petroleum products is to be subjected to additional drying. Simulation of net calorific value has been performed based on the calorific values of peat and petroleum products with different ratios of petroleum product content in peat and for a saturated peat sample. The obtained results are compared with those of experiments conducted in a calorimetric bomb and recalculated for net calorific value. A satisfactory discrepancy is obtained, which amounts to about 12%. Options have been considered providing for combustion of saturated peat as fuel (burnt per se and combined with a solid fuel) and processing it to produce liquid, gaseous and solid fuels. Peat can be used to solve environmental problems of elimination of emergency spills of crude oil and petroleum products and as an additional resource in solving the problem of finding affordable energy.


2013 ◽  
Vol 856 ◽  
pp. 338-342 ◽  
Author(s):  
Chin Yee Sing ◽  
Mohd Shiraz Aris

Burning fossil fuel like coal in power plants released carbon dioxide that had been absorbed millions of years ago. Unfortunately, excessive carbon dioxide emission had led to global warming. Malaysia, as one of the major exporters of palm oil, has abundant oil palm mill residues that could be converted into value-added product like biomass fuel briquettes. Fuel briquette with palm kernel shell and palm mesocarp fibre as its main ingredients showed satisfactory fuel characteristics and mechanical properties as a pure biomass fuel briquette. The effects of adding some coal of higher calorific value to the satisfactory biomass fuel briquette were focused in this study. Various coal-biomass fuel blends were used, ranging from 0wt% coal to 50wt% coal. The fuel properties and mechanical properties of pure biomass briquette and briquettes with different amount of coal added were compared experimentally. From the fuel properties tests, it was found that as the coal content in the briquette was increased, the carbon content and calorific value increased. Mechanical property tests on the fuel briquettes showed a mixture of results, with some favored higher portion of coal in the briquette for better handling, transport and storage properties while some favored greater amount of biomass.


Sign in / Sign up

Export Citation Format

Share Document