scholarly journals EFFECT OF EDEM1 OVEREXPRESSION ON THE GENERATION AND ASSEMBLY OF MAJOR HISTOCOMPATIBILITY COMPLEXES

2016 ◽  
Vol 25 (4) ◽  
pp. 181-186
Author(s):  
Alexandra Circiumaru ◽  
◽  
Gabriela Chiritoiu ◽  
Livia Sima ◽  
Mihai Bojinca ◽  
...  

Background. A better understanding of the role of endoplasmic reticulum degradation-enhancing alpha-mannosidase – like protein 1 (EDEM1) in endoplasmic reticulum associated degradation (ERAD) may open new therapeutic approaches in autoimmune diseases. Aim. To study ERAD and EDEM1 in the generation and assembly of MHC I and the potential role in the pathophysiology of autoimmune diseases. Materials and methods. HEK293T cell line (human embrionic kidney cells), A375 cell line (amelanotic melanoma cells) and THP-1 cell line (leukemic monocytes used both as undifferentiated and differentiated) underwent transient transfection with EDEM1 and mock transfection with pTriEx. Western blot experiments assessed the total cellular MHC I levels in cell lysates, while expression on the cellular surface was quantified by flow cytometry of fixed cells. Results were analysed using the FACS Calibur and CellQuest Pro dedicated software. Experiments were done twice with duplicate probes for the Western blot assay and triplicate probes were used for flow cytometry. GraphPad Prism was used for data analysis. Results. MHC I plasma membrane routing and expression was similar in HEK293T and A375 both in mock transfected and non-transfected cells. Western blot assay for EDEM1 transfected cells showed bands corresponding to the total MHC I that migrated at 42kDa mass in non-transfected and mock transfected Hek293T, A375 and undifferentiated THP-1 cells. Mock transfected differentiated THP-1 cells showed a reduction of total MHC I. EDEM1 transfected Hek293T, A375 and undifferentiated THP-1 cells displayed higher levels of total MHC I, while differentiated THP-1 cells showed a marked reduction. Flow cytometry assay showed significantly reduced cell surface MHC I levels in Hek293T cell line. We observed a modest reduction of MHC I complexes on the cellular surface in undifferentiated THP-1 EDEM1 transfected cells, while there was no significant change in the A375 EDEM1 transfected cell line, as well as the differentiated THP-1 EDEM1 transfected cells. Conclusion. The impact of ERAD’s EDEM1 in MHC I reduction may have an important role in autoimmune disease, making ERAD an interesting therapeutic target.

2020 ◽  
Author(s):  
Unai Perpiña ◽  
Cristina Herranz ◽  
Raquel Martin-Ibañez ◽  
Anna Boronat ◽  
Felipe Chiappe ◽  
...  

Abstract Background: Cell banks are widely used to preserve cell properties as well as to record and control the use of cell lines in biomedical research. The generation of cell banks for the manufacturing of Advanced Therapy Medicinal Products, such as cell and gene therapy products, must comply with current Good Manufacturing Practice regulations. The quality of the cell lines used as starting materials in viral-vector manufacturing processes must be also assessed.Methods: Three batches of a Master Cell Bank and a Working Cell Bank of the HEK293T cell line were manufactured under current Good Manufacturing Practices regulations. Quality control tests were performed according to product specifications. Process validation includes the training of manufacturing personnel by performing simulation tests, and the continuous measurement of environmental parameters such as air particles and microorganisms. Cell number and viability of cryopreserved cells were periodically measured in order to define the stability of these cellular products.Results: All batches of HEK293T Master and Working Cell Banks met the acceptance criteria of their specifications showing the robustness and homogeneity of the processes. In addition, both Master and Working Cell Banks maintained the defined cell viability and concentration over a 37 month-period after cryopreservation. Conclusions: Manufacturing cell banks under Good Manufacturing Practice regulations for their use as raw materials or final cellular products is feasible. HEK293T cell banks were used to manufacture clinical-grade lentiviral particles for Chimeric Antigen Receptor T-cell based clinical trials.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Ze-Tian Shen ◽  
Ying Chen ◽  
Gui-Chun Huang ◽  
Xi-Xu Zhu ◽  
Rui Wang ◽  
...  

Abstract Background Radiotherapy failure is a significant clinical challenge due to the development of resistance in the course of treatment. Therefore, it is necessary to further study the radiation resistance mechanism of HCC. In our early study, we have showed that the expression of Aurora-A mRNA was upregulated in HCC tissue samples or cells, and Aurora-A promoted the malignant phenotype of HCC cells. However, the effect of Aurora-A on the development of HCC radioresistance is not well known. Methods In this study, colony formation assay, MTT assays, flow cytometry assays, RT-PCR assays, Western blot, and tumor xenografts experiments were used to identify Aurora-A promotes the radioresistance of HCC cells by decreasing IR-induced apoptosis in vitro and in vivo. Dual-luciferase reporter assay, MTT assays, flow cytometry assays, and Western blot assay were performed to show the interactions of Aurora-A and NF-κB. Results We established radioresistance HCC cell lines (HepG2-R) and found that Aurora-A was significantly upregulated in those radioresistant HCC cells in comparison with their parental HCC cells. Knockdown of Aurora-A increased radiosensitivity of radioresistant HCC cells both in vivo and in vitro by enhancing irradiation-induced apoptosis, while upregulation of Aurora-A decreased radiosensitivity by reducing irradiation-induced apoptosis of parental cells. In addition, we have showed that Aurora-A could promote the expression of nuclear IkappaB-alpha (IκBα) protein while enhancing the activity of NF-kappaB (κB), thereby promoted expression of NF-κB pathway downstream effectors, including proteins (Mcl-1, Bcl-2, PARP, and caspase-3), all of which are associated with apoptosis. Conclusions Aurora-A reduces radiotherapy-induced apoptosis by activating NF-κB signaling, thereby contributing to HCC radioresistance. Our results provided the first evidence that Aurora-A was essential for radioresistance in HCC and targeting this molecular would be a potential strategy for radiosensitization in HCC.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2904-2904
Author(s):  
Robyn M. Dennis ◽  
Brandon Ballard ◽  
David John Tweardy ◽  
Karen Rabin

Abstract Abstract 2904 Survival has improved dramatically in acute lymphoblastic leukemia (ALL), but further gains are unlikely using conventional chemotherapy alone. Several recently discovered, novel cytogenetic lesions with adverse prognostic impact, JAK2 activating mutations and CRLF2 rearrangements, occur in up to 15% of adult and pediatric ALL. These lesions are associated with activation of Jak2 and Stat5, and hold promise as targets for novel therapies affecting these signaling pathways. We performed in vitro testing of a novel small molecule Stat inhibitor, C188-9, in B-lineage ALL cell lines and patient samples with and without JAK2/CRLF2 alterations. C188-9 treatment for one hour at 10 μM inhibited Stat3 and Stat5 phosphorylation in ALL cell lines with JAK2 and CRLF2 alterations, but not in cell lines with wild-type JAK2 and CRLF2, as measured by phospho-flow cytometry (Fig. 1A). Only the cell lines with JAK2 and CRLF2 alterations demonstrated basal Stat5 phosphorylation on Western blot analysis, and this was inhibited by C188-9 treatment (Fig. 1B). C188-9 demonstrated cytotoxicity in ALL cell lines regardless of JAK2/CRLF2 status, with IC50s in the low micromolar concentration range (Fig. 1C). While C188-9 is undergoing investigation currently as a potent inhibitor of Stat3 in acute myeloid leukemia (AML), it also merits further investigation as an agent with Stat5 inhibitory activity and cytotoxicity in ALL. Figure 1. Effects of C188-9 in ALL cell lines. A. Stat3 and Stat5 phosphorylation were determined by flow cytometry in the ALL cell lines MHH-CALL-4 (JAK2/CRLF2 mutated) and Reh (JAK2/CRLF2 wild-type). In each condition, cells were incubated in serum-free media for one hour, followed by incubation with C188-9 or vehicle for one hour, stimulation with vehicle or pervanadate 125 mM for 15 minutes, fixation, permeabilization, phospho-antibody staining for phospho-Stat3 and phospho-Stat5, and flow cytometric analysis. B. Western blot for phospho-Stat5 in K562 cell line (positive control); MHHCALL-4 treated for one hour with C188-9 at 0, 5, or 10 uM; and RS4;11 (JAK2/CRLF2 wild-type ALL cell line). C. IC50 determination by ATP assay for C188-9 in the ALL cell lines MHH-CALL-4 and RS4;11. Each experiment was performed in triplicate. Figure 1. Effects of C188-9 in ALL cell lines. A. Stat3 and Stat5 phosphorylation were determined by flow cytometry in the ALL cell lines MHH-CALL-4 (JAK2/CRLF2 mutated) and Reh (JAK2/CRLF2 wild-type). In each condition, cells were incubated in serum-free media for one hour, followed by incubation with C188-9 or vehicle for one hour, stimulation with vehicle or pervanadate 125 mM for 15 minutes, fixation, permeabilization, phospho-antibody staining for phospho-Stat3 and phospho-Stat5, and flow cytometric analysis. B. Western blot for phospho-Stat5 in K562 cell line (positive control); MHHCALL-4 treated for one hour with C188-9 at 0, 5, or 10 uM; and RS4;11 (JAK2/CRLF2 wild-type ALL cell line). C. IC50 determination by ATP assay for C188-9 in the ALL cell lines MHH-CALL-4 and RS4;11. Each experiment was performed in triplicate. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2035-2035
Author(s):  
Yannis Hara ◽  
Dipti Gupta ◽  
Courtney Mercadante ◽  
Kim Alving ◽  
Yukio Nakamura ◽  
...  

Abstract Introduction: Sickle Cell Disease (SCD) is a group of inherited disorders caused by mutations in the β-globin gene which encodes the hemoglobin subunit β in erythrocytes [1]. Hemoglobin containing the mutant β-globin polymerizes and causes sickling of erythrocytes, which subsequently leads to vaso-occlusion, hemolysis, and activation of the immune system by release of free heme [2]. Heme-regulated eIF2α kinase, also known as heme-regulated inhibitor (HRI/EIF2AK1), the dsRNA-activated kinase Protein Kinase R (PKR/EIF2AK2), PKR-like endoplasmic reticulum kinase (PERK/EIF2AK3) and General Control Non-Depressible 2 (GCN2/EIF2AK4) are four kinases belonging to the eIF2α kinases family and play key functions in the Integrated Stress Response-ATF4 pathway, which is critical for translational control in response to various stress conditions [3]. These kinases are activated respectively by heme depletion, viral infection, endoplasmic reticulum stress, and amino acid starvation, and they phosphorylate eukaryotic initiation factor-2α (eIF2α). Recently, it has been shown that HRI inhibition induces fetal hemoglobin in HUDEP-2 cells and CD34+ hematopoietic progenitor stem cells and prevents sickling, suggesting HRI as a potential therapeutic target for SCD [4, 5]. Moreover, it has been well documented that kinase inhibition can activate compensatory loops (bypass signaling) to circumvent the inhibited target, in particular by overexpression and activation of kinases having the same substrate [6, 7]. Thus, in this study, we investigated if the inhibition of HRI in HUDEP-2 cells lead to compensatory mechanisms by modulation of the expression and activation of the other eIF2α kinases. Methods: To inhibit HRI, we generated HUDEP-2 [8] HRI Knock-Out cells (HRI-KO) and HUDEP-2 HRI Kinase Dead cells (K196R) (clones HRI-KD1 and HRI-KD2) by using CRISPR-Cas9 gene editing technology [9]. We confirmed the induction of fetal hemoglobin for each clone by flow cytometry. To evaluate a potential compensatory mechanism, we measured the effects of HRI inhibition on the expression and activation of the other eIF2α kinases by western blot (WB) and the regulation at the transcriptomic level by qPCR. Based on the results of preliminary studies, we generated HUDEP-2 PKR Knock-Out cells (PKR-KO) by CRISPR-Cas9. We differentiated them for 7 days and we quantified the level of fetal hemoglobin by flow cytometry, AlphaLISA® and WB. Results: HRI-KO, HRI-KD1 and HRI-KD2 clones expressed fetal hemoglobin after 7-day of differentiation consistent with published data [4]. HRI inhibition did not result in any modulation of PKR protein expression, but the activation of PKR, measured by phosphorylation at its residue Threonine 446, was decreased in HRI-KD1, HRI-KD2, and in HRI-KO cells at day 0 and day 7 of differentiation. As PKR and HRI have the same downstream target eIF2α and HRI inhibition induces fetal hemoglobin through eIF2α-ATF4-Bcl11a axis, we verified if fetal hemoglobin induction is due to HRI inhibition exclusively and is not a consequence of the decrease in PKR activation when HRI is inhibited. We measured the protein expression level of fetal hemoglobin in PKR-KO cells and results obtained by flow cytometry, western blot and AlphaLISA® did not show any regulation in fetal hemoglobin in PKR-KO cells after 7 days of differentiation. Finally, HRI inhibition did not result in any regulation of kinases PERK and GCN2 activation and expression, at the RNA and protein level. The expression of these two eIF2α kinases was low compared to HRI and PKR. Conclusion: HRI inhibition does not cause any modulation in the expression and activation of GCN2 and PERK in HUDEP-2 cells but results in a decrease in PKR activation. This outcome could be explained by a possible increase in the expression of proteins that inhibit PKR, such as TRBP or Hsp40, and are induced by HRI silencing (Hsp40) [10-12]. Nonetheless PKR inhibition does not induce fetal hemoglobin in HUDEP-2 cells after 7 days of differentiation. Overall, this study provides evidence that fetal hemoglobin induction by HRI inhibition in HUDEP-2 cells is independent from the other eIF2α kinases and supports HRI as a potential therapeutic target in SCD. However, the biological implications of a potential compensatory effect on PKR signaling in HRI-expressing tissues warrant further investigation. Disclosures Krishnamoorthy: Cellarity, Inc.: Current Employment, Current holder of stock options in a privately-held company.


2016 ◽  
Author(s):  
Nay Chi Khin ◽  
Jenna L. Lowe ◽  
Lora M. Jensen ◽  
Gaetan Burgio

AbstractA recently published research article reported that the extreme halophile archaebacterium Natronobacterium gregoryi Argonaute enzyme (NgAgo) could cleave the cellular DNA under physiological temperature conditions in cell line and be implemented as an alternative to CRISPR/Cas9 genome editing technology. We assessed this claim in mouse zygotes for four loci (Sptb, Tet-1, Tet-2 and Tet-3) and in the human HEK293T cell line for the EMX1 locus. Over 100 zygotes were microinjected with nls-NgAgo-GK plasmid provided from Addgene and various concentrations of 5’- phosphorylated guide DNA (gDNA) from 2.5 ng/μl to 50 ng/μl and cultured to blastocyst stage of development. The presence of indels was verified using T7 endonuclease 1 assay (T7E1) and Sanger sequencing. We reported no evidence of successful editing of the mouse genome. We then assessed the lack of editing efficiency in HEK293T cell line for the EMX1 endogenous locus by monitoring the NgAgo protein expression level and the editing efficiency by T7E1 assay and Sanger sequencing. We reported that the NgAgo protein was expressed from 8 hours to a maximum expression at 48 hours post-transfection, confirming the efficient delivery of the plasmid and the gDNA but no evidence of successful editing of EMX1 target in all transfected samples. Together our findings indicate that we failed to edit using NgAgo.


2020 ◽  
Author(s):  
Unai Perpiña ◽  
Cristina Herranz ◽  
Raquel Martin-Ibañez ◽  
Anna Boronat ◽  
Felipe Chiappe ◽  
...  

Abstract Background: Cell banks have been widely used to preserve cell properties as well as to record and control cell line access in research. However, the generation of cell banks involved in the manufacturing of Advanced therapy medicinal products such as cell or gene therapy products must comply with the current Good Manufacturing Practice regulation. Similarly, the quality of those cell lines used as starting materials in viral-vector manufacturing processes must be also evaluated.Methods: Three batches of both Master Cell Bank and Working Cell Bank of the HEK293T cell line were manufactured under the current Good Manufacturing Practices regulation. Quality control test were performed according to the product specifications. The process validation includes previous qualification of the manufacturing personnel by performing simulation tests as well as the continuous measure of environmental parameters during manufacturing such as air particles and microorganism. Cell number and viability of cryopreserved cells were periodically measured in order to define the stability of these cellular products.Results: All batches of Master Cell Bank and Working Cell Bank fulfilled the acceptance criteria of their specifications showing the robustness and homogeneity of the processes. In addition, both Master and Working cell bank maintain the defined viability and cell number 37 months after cryopreservation. Conclusions: Manufacturing cell banks under Good Manufacturing Practices regulation for its use as raw material or final cellular product is feasible. HEK293T cell banks have been used to manufacture clinical-grade lentiviral particles for Chimeric Antigen Receptor T-cell based clinical trials.


2021 ◽  
Author(s):  
Abeer H Obaid ◽  
Chryssa Zografou ◽  
Douangsone D Vadysirisack ◽  
Bailey Munro-Sheldon ◽  
Miriam L Fichtner ◽  
...  

Background: Autoantibodies targeting the acetylcholine receptor (AChR) in the serum of myasthenia gravis (MG) patients are broadly polyclonal and heterogeneous in their pathogenic capacity. Specifically, AChR autoantibody-mediated pathology occurs through three mechanisms that include complement-directed tissue damage, blocking of the acetylcholine binding site on the AChR, and modulation (internalization) of the AChR. Clinical assays used for diagnosis and prognosis measure only AChR autoantibody binding and they provide weak association with disease burden, thereby limiting understanding of mechanistic heterogeneity, and monitoring therapeutic response. Objective: To develop an in-vitro cell-based assay that measures AChR autoantibody-mediated complement membrane attack complex (MAC) formation. Methods: A HEK293T cell line, which is commonly used for live cell-based AChR autoantibody binding assays, was modified such that the expression of the complement regulator genes (CD46, CD55 and CD59) were disrupted using CRISPR/Cas9 genome editing. This modified cell line was used to measure serum AChR autoantibody-mediated complement MAC formation via flow cytometry. Results: AChR autoantibody-mediated MAC formation required the use of a modified HEK293T cell line in which the surface expression of three complement regulator genes was absent. Serum samples (n=155) from 97 clinically confirmed AChR patients were tested along with 32 healthy donor (HD) samples; the MG cohort included a wide range of disease burden and AChR autoantibody titer. AChR autoantibodies were detected in 139 of the 155 (89.7%) AChR patient samples via a live cell-based assay. Of the 139 AChR positive samples, autoantibody-mediated MAC formation was detected in 83 (59.7%), while no autoantibodies or MAC formation was detected in samples from the HD group. Autoantibody-mediated MAC formation positively associated with autoantibody binding in most MG patient samples. However, a subset displayed a disassociation between binding and MAC formation. Conclusions: We demonstrate the development of a novel assay for evaluating AChR autoantibody-mediated complement activity. It is anticipated that this assay will afford a deeper understanding of the heterogeneous disease pathology and allow for the identification of MG patients who may benefit from complement inhibitor therapy.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ke Chen ◽  
Xiaohua Lv ◽  
Wei Li ◽  
Fei Yu ◽  
Jianjing Lin ◽  
...  

Low back pain (LBP) is the leading cause of disability in the elderly. Intervertebral disc degeneration (IDD) was considered as the main cause for LBP. Degeneration of cartilaginous endplate was a crucial harmful factor during the initiation and development of IDD. Oxidative stress was implicated in IDD. However, the underlying molecular mechanism for the degeneration of cartilaginous endplate remains elusive. Herein, we found that oxidative stress could induce apoptosis and autophagy in endplate chondrocytes evidenced by western blot analysis, flow cytometry, immunofluorescence staining, GFP-LC3B transfection, and MDC staining. In addition, we also found that the apoptosis of endplate chondrocytes was significantly increased after the inhibition of autophagy by bafilomycin A1 shown by flow cytometry. Furthermore, mTOR pathway upstream autophagy was greatly suppressed suggested by western blot assay. In conclusion, our study strongly revealed that oxidative stress could increase autophagy and apoptosis of endplate chondrocytes in intervertebral disc. The increase of autophagy activity could prevent endplate chondrocytes from apoptosis. The autophagy in endplate chondrocytes induced by oxidative stress was mTOR dependent. These findings might shed some new lights on the mechanism for IDD and provide new strategies for the treatments of IDD.


2020 ◽  
Vol 36 (2) ◽  
pp. 99-109
Author(s):  
L. M. Shlapatska ◽  
I. M. Gordiienko ◽  
L. M. Kovalevska ◽  
S. P. Sidorenko

2018 ◽  
Vol 120 (3) ◽  
pp. 3124-3136 ◽  
Author(s):  
Vera S. Efimova ◽  
Ludmila V. Isaeva ◽  
Anastasia A. Labudina ◽  
Vadim N. Tashlitsky ◽  
Mikhail A. Rubtsov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document