scholarly journals Immunity Correction by a Foot Method of the Body Systemic Mobilization

2021 ◽  
Vol 20 (5) ◽  
pp. 53-64
Author(s):  
Ramil R. Amerkhanov ◽  
Radislav R. Amerkhanov

Physical rehabilitation, by the foot method of body systemic mobilization, is a new medical technology. In connection with the current global unstable infectious situation, the need arose again to return to the question of finding and developing a systematic approach of simple and generally available physical methods. Aim. Analyze and evaluate the effect of the method of systemic mobilization of the body with the foot on the immune system of the human body, in order to prevent and rehabilitate post-infectious conditions. Material and methods. The research was carried out in various climatic zones. The procedures were based on the techniques of the first, second and third orders, in the second and third age groups. The first group consisted of patients of the second age group (13-60 years old). The second study group was represented by the third age group (60 years +). Materials of the first age group (up to 13 years old) were not submitted to the analysis. The method of exposure stipulated only the canonical motion direction in the selected sessions, the session lasted within 40-70 minutes, every day, for 10-30 days, taking into account weight, age and chronic diseases. 237 male and female patients’ material was reviewed and analyzed. Results and discussion. The method of systemic mobilization of the body exposed to the foot showed more significant positive results in the second age group - 92.8% and less in the third – 78.6% . To achieve positive results, it took more procedures 4 ± 1.0 in a humid climate compared to a dry one. It has been approved that accelerated blood flow in the main and collateral vessels triggers the activity of the lymphatic system. In the primary lymphoid organs, the hematopoietic function is restored and increased, optimizing lymphopoiesis and the state of lymphodynamics. Techniques of the first order (level) restore the flow of lymph through the superficial lymphatic vessels, collecting and producing outflow of lymph from the skin, subcutaneous tissue, superficial fascia and the surface layer of muscle fibers.Techniques of the second order (level) affect the lymph flow of deep lymphatic vessels, collecting lymph from muscles, joints and bones, producing outflow from deeply located tissues, lymphatic vessels lying along the arteries and veins of the same name, actively anastomosing with a network of superficial lymphatic vessels. Techniques of the III order (level) promote lymph flow through the lymphatic capillaries, from intra- and extra-organ lymphatic vessels, trunks and ducts. These techniques create conditions for accelerating drainage in the thoracic duct, producing an “emptying” effect by a direct physical coercion on the vertebral column, penetrating deeply. Conclusion. This method has statistically confirmed studies that indicate its ability to significantly increase the speed of blood flow in the main and adjacent vessels. The method can be considered as having a positive effect on lymphodynamics, in particular on lymphatic capillaries emanating from intra- and extra organ lymphatic vessels, trunks and ducts. By increasing the transport function of the lymphatic vessels, providing a full blood supply (nutrition) to the primary organs of the lymphatic system, exerting a stimulating effect on the spirally oriented lymphangion myocytes, in a soft and carefully worked out way, the foot method of systemic body mobilization creates optimal conditions for the correction of the immune system. Thus, it is able to protect the internal environment of the human body from foreign agents.

2021 ◽  
Author(s):  
Tania HIDALGO ◽  
Rosana Simón-Vázquez ◽  
africa González-Fernández ◽  
Patricia Horcajada

Human body is continuously in a never-ending chess game against pathogens. When the immune system, our natural defense tool, is weakened, these organisms are able to escape, collapsing the body...


2019 ◽  
Vol 316 (1) ◽  
pp. G217-G227 ◽  
Author(s):  
Olga Y. Gasheva ◽  
Irina Tsoy Nizamutdinova ◽  
Laura Hargrove ◽  
Cassidy Gobbell ◽  
Maria Troyanova-Wood ◽  
...  

This study aimed to establish mechanistic links between the prolonged intake of desloratadine, a common H1 receptor blocker (i.e., antihistamine), and development of obesity and metabolic syndrome. Male Sprague-Dawley rats were treated for 16 wk with desloratadine. We analyzed the dynamics of body weight gain, tissue fat accumulation/density, contractility of isolated mesenteric lymphatic vessels, and levels of blood lipids, glucose, and insulin, together with parameters of liver function. Prolonged intake of desloratadine induced development of an obesity-like phenotype and signs of metabolic syndrome. These alterations in the body included excessive weight gain, increased density of abdominal subcutaneous fat and intracapsular brown fat, high blood triglycerides with an indication of their rerouting toward portal blood, high HDL, high fasting blood glucose with normal fasting and nonfasting insulin levels (insulin resistance), high liver/body weight ratio, and liver steatosis (fatty liver). These changes were associated with dysfunction of mesenteric lymphatic vessels, specifically high lymphatic tone and resistance to flow together with diminished tonic and abolished phasic responses to increases in flow, (i.e., greatly diminished adaptive reserves to respond to postprandial increases in lymph flow). The role of nitric oxide in this flow-dependent adaptation was abolished, with remnants of these responses controlled by lymphatic vessel-derived histamine. Our current data, considered together with reports in the literature, support the notion that millions of the United States population are highly likely affected by underevaluated, lymphatic-related side effects of antihistamines and may develop obesity and metabolic syndrome due to the prolonged intake of this medication. NEW & NOTEWORTHY Prolonged intake of desloratadine induced development of obesity and metabolic syndrome associated with dysfunction of mesenteric lymphatic vessels, high lymphatic tone, and resistance to flow together with greatly diminished adaptive reserves to respond to postprandial increases in lymph flow. Data support the notion that millions of the USA population are highly likely affected by underevaluated, lymphatic-related side effects of antihistamines and may develop obesity and metabolic syndrome due to the prolonged intake of this medication.


2002 ◽  
Vol 82 (3) ◽  
pp. 673-700 ◽  
Author(s):  
Lotta Jussila ◽  
Kari Alitalo

Blood and lymphatic vessels develop in a parallel, but independent manner, and together form the circulatory system allowing the passage of fluid and delivering molecules within the body. Although the lymphatic vessels were discovered already 300 years ago, at the same time as the blood circulation was described, the lymphatic system has remained relatively neglected until recently. This is in part due to the difficulties in recognizing these vessels in tissues because of a lack of specific markers. Over the past few years, several molecules expressed specifically in the lymphatic endothelial cells have been characterized, and knowledge about the lymphatic system has started to accumulate again. The vascular endothelial growth factor (VEGF) family of growth factors and receptors is involved in the development and growth of the vascular endothelial system. Two of its family members, VEGF-C and VEGF-D, regulate the lymphatic endothelial cells via their receptor VEGFR-3. With the aid of these molecules, lymphatic endothelial cells can be isolated and cultured, allowing detailed studies of the molecular properties of these cells. Also the role of the lymphatic endothelium in immune responses and certain pathological conditions can be studied in more detail, as the blood and lymphatic vessels seem to be involved in many diseases in a coordinated manner. Discoveries made so far will be helpful in the diagnosis of certain vascular tumors, in the design of specific treatments for lymphedema, and in the prevention of metastatic tumor spread via the lymphatic system.


Author(s):  
Brecht Daams

The Corona virus SARS-CoV2 that causes COVID-19 has effects that until now have not been explained. The widespread damage of SARS-CoV2, the comorbidities in critically ill COVID-19 patients, and the symptoms of post-COVID-19 patients show striking similarities with conditions that are related to depletion of nitric oxide (NO) in the human body. Many of the symptoms of the disease may be caused by acute depletion of NO by the immune system. Patients with the highest COVID-19 burden often have comorbidities that are related to chronic depletion of NO. Post-COVID-19 health problems may be caused by earlier depletion of NO. Successful therapy requires sufficient NO levels. Supplementation with NO will increase immunity, help prevent thrombosis, and improve breathing, kidney functions, blood flow and oxygenation in patients, elderly patients and patients with comorbidities in particular. Furthermore, NO helps to prevent SARS-CoV2 from entering the human cell and to suppress viral RNA production. NO is not easy to supplement. A few SARS patients have been treated with inhaled NO with positive results, but inhaled NO can only deliver small quantities of NO. A new therapy has been developed to more effectively supplement NO. It combines the ingestion of nitrates (as NO donor), N-acetylcysteine and vitamin C (promoting NO metabolism) with electrostimulation of the muscles (to trigger the release of NO). It is expected that this therapy can ease the most serious symptoms of (post) COVID-19, especially for elderly and people with comorbidities. A patent has been applied for.


2016 ◽  
Vol 2 (1) ◽  
pp. 33
Author(s):  
Maryum Khan ◽  
Muhammad Tauqeer Ajmal

AbstractAsthma is exaggerated response of immune system which is a leading cause of death in the third world. Main causes of asthma are allergy, smoking, drugs like NSAID (Aspirin) and family history. Objective of study was to check the prevalence of asthma in different age groups and its impact on socioeconomical behaviors of the peoples of southern Punjab, by developing a questionnaire. Incidence of asthmatic attack in the age group of 20 to 60 years was more than in age group of 20 years, furthermore the incidence was found to be more common in females as compare to males. The smokers were at more risk to develop the disease as compared to the nonsmokers.


2021 ◽  
Vol 18 (3) ◽  
pp. 336-344
Author(s):  
V. V. Klimontov ◽  
D. M. Bulumbaeva

The lymphatic system (LS) is one of the main integrative systems of the body, providing protective and transport functions. In recent years, interactions between LS and adipose tissue (AT) have been of particular interest. Lymphatic vessels play an important role in metabolic and regulatory functions of AT, acting as a collector of lipolysis products and adipokines. In its turn, hormones and adipocytokines that produced in adipocytes (including leptin, adiponectin, IL-6, TNF-α, etc.) affect the function of lymphatic endothelial cells and control the growth of lymphatic vessels. Cooperation between LS and AT becomes pathogenetically and clinically important in lymphedema and obesity. It is known that both primary and secondary lymphedema are characterized by increased fat accumulation which is associated with the severity of lymphostasis and inflammation. Similarly, in obesity, the drainage function of LS is impaired, which is accompanied by perilymphatic mononuclear infiltration in the AT. The development of these changes is facilitated by endocrine dysfunction of adipocytes and impaired production of adipocytokines. The increase in the production of inflammatory mediators and the disruption of the traffic of inflammatory cells causes a further deterioration in the outflow of interstitial fluid and exacerbates the inflammation of the AT, thereby forming a vicious circle. The role of lymphangiogenesis in AT remodeling in obesity needs further research. Another promising area of research is the study of the role of intestinal LS in the development of obesity and related disorders. It has been shown that the transport of chylomicrons from the intestine depends on the expression of a number of molecular mediators (VEGF-C, DLL-4, neuropilin-1, VEGFR-1, CD36/FAT, etc.)in the endotheliocytes of the intestinal lymphatic vessels, as well as the functioning of «push-button» and “zippering” junctions between endothelial cells. New approach to the treatment of obesity based on blockade of lymphatic chylomicrontransport has been experimentally substantiated. Further identification of the molecular mechanisms and signaling pathways that determine the remodeling of AT in lymphedema and obesity are likely to provide new approaches to the treatment of these diseases.


Author(s):  
Ana Lúcia Alves Caram ◽  
Gracinalda De Oliveira Silveira ◽  
Edna Cristina Mariano de Lima ◽  
Anna Christina Aires Braga Carneiro ◽  
Josiane Ferreira De Mello ◽  
...  

COVID-19 is a disease caused by a coronavirus, called SARS-CoV-2. This virus has become a major public health concern worldwide, causing a collective outbreak, leading to the pandemic in 2020. People become infected with other common coronaviruses throughout their lives, but currently the concern is the COVID-19 type due to its severity in some cases. The immune system protects the body against external aggressions and preserves the body's homeostasis, and nutrients are involved in the development and preservation of this system. Considering the degree of complications that can occur in an individual with COVID-19, regardless of their age group, and in some cases even lethal, there was an interest in researching studies about this disease, and which nutrients are mentioned in the literature regarding immunity in this disease. The aims of this research were to describe concepts about the disease COVID-19 and to identify nutrients involved in the immunity and treatment of this disease, through a literature review in the period from December 2019 to October 2020. There is no doubt that it is essential to maintain an adequate nutritional status, through a balanced diet that can contribute to a better coping with the infectious state. Supplementation of vitamins, minerals, probiotics and prebiotics can provide the immune system, several of them were cited as an adjunct to the treatment of COVID-19, including their doses, but there was a lack of agreement regarding the dose of nutrients. Obviously maintaining social distance, wearing masks and proper hygiene are essential to reduce the risk of contamination, while not having access to vaccination.


1993 ◽  
Vol 265 (3) ◽  
pp. R703-R705 ◽  
Author(s):  
R. E. Drake ◽  
Z. Anwar ◽  
S. Kee ◽  
J. C. Gabel

Intravenous fluid infusions cause increased venous pressure and increased lymph flow throughout the body. Together the increased lymph flow and increased venous pressure (the outflow pressure to the lymphatic system) should increase the pressure within the postnodal intestinal lymphatics. To test this, we measured the pressure in postnodal intestinal lymphatics and the neck vein pressure in five awake sheep. At baseline, the neck vein pressure was 1.2 +/- 1.5 (SD) cmH2O and the lymphatic pressure was 12.5 +/- 1.7 cmH2O. When we infused Ringer solution intravenously (10% body weight in approximately 50 min), the neck vein pressure increased to 17.3 +/- 0.9 cmH2O and the lymphatic pressure increased to 24.6 +/- 3.8 cmH2O (both P < 0.05). In two additional sheep, the thoracic duct lymph flow rate increased from 0.8 +/- 0.4 ml/min at baseline to 5.5 +/- 2.0 ml/min during the infusions. Our results show that postnodal intestinal lymphatic pressure may increase substantially during intravenous fluid infusions. This is important because increases in postnodal lymphatic pressure may slow lymph flow from the intestine.


Blood ◽  
2016 ◽  
Vol 128 (9) ◽  
pp. 1169-1173 ◽  
Author(s):  
John D. Welsh ◽  
Mark L. Kahn ◽  
Daniel T. Sweet

Abstract Aside from the established role for platelets in regulating hemostasis and thrombosis, recent research has revealed a discrete role for platelets in the separation of the blood and lymphatic vascular systems. Platelets are activated by interaction with lymphatic endothelial cells at the lymphovenous junction, the site in the body where the lymphatic system drains into the blood vascular system, resulting in a platelet plug that, with the lymphovenous valve, prevents blood from entering the lymphatic circulation. This process, known as “lymphovenous hemostasis,” is mediated by activation of platelet CLEC-2 receptors by the transmembrane ligand podoplanin expressed by lymphatic endothelial cells. Lymphovenous hemostasis is required for normal lymph flow, and mice deficient in lymphovenous hemostasis exhibit lymphedema and sometimes chylothorax phenotypes indicative of lymphatic insufficiency. Unexpectedly, the loss of lymph flow in these mice causes defects in maturation of collecting lymphatic vessels and lymphatic valve formation, uncovering an important role for fluid flow in driving endothelial cell signaling during development of collecting lymphatics. This article summarizes the current understanding of lymphovenous hemostasis and its effect on lymphatic vessel maturation and synthesizes the outstanding questions in the field, with relationship to human disease.


Sign in / Sign up

Export Citation Format

Share Document