DÜNYANIN VE TÜRKİYE’ NİN DOĞAL GAZ TALEP SENARYOSU

Author(s):  
Çetin İNCEKARA

Although the global energy demand varies from country to country, it is constantly increasing on a global scale. As per IEA’s projections, the usage of two energy sources will increase (renewable with 12% and natural gas with 28%) in the global energy demand until 2040. In the study, 48 number of experts/managers (Decision Makers-DM) working in the energy sector were interviewed to establish/determine 10 main criteria and 43 sub-criteria used in demand scenarios. In the study, fuzzy multi-objective mathematical model (by using fuzzy AHP, and fuzzy TOPSIS) is developed to calculate World's and Turkey’s natural gas demand under high and low demand scenarios. By the help of model, the usage of natural gas amount in World by regions between 2020 and 2030 is calculated. In Scenario-High it will increase by approx. 26 % between 2020 and 2030 and reached 4.800 bcm in 2040. In Scenario-Low it will increase by approx. 5 % from 2020 to 2030 and reached 4.000 bcm in 2030. It is the only fossil fuel expected to grow beyond 2030 since it is clean energy source. In Scenario-High natural gas demand by region is calculated/projected as follows: in 2030 North America 1250 bcm, Central and South America 250 bcm, Europe 650 bcm, Middle East 750 bcm, Eurasia 650 bcm, Asia Pacific 1250 bcm. In the study, under the high demand scenario it has been calculated that the usage of natural gas in Turkey will increase by 52% between 2020 and 2030 and reach approximately 76 bcm, and in the low demand scenario Turkey's total natural gas demand will decrease by approximately 9% and reach approximately 45 bcm. In the study by using Fuzzy TOPSIS method, 10 number of sectors are examined and “Energy sector” was the first and “Industry sector” was the second in the ranking of the sectors in terms of global and Turkey’s natural gas demand scenario. In the study, the usage of natural gas is the only fossil resource that is expected to increase in the global energy mix among fossil fuels in 2030. This is due to high reserve amount of natural gas, i.e. global conventional natural gas reserves with 206 trillion m3 and unconventional unexplored natural gas reserves with 354 trillion m3, and as well as being a clean and environmental-friendly energy source. Since it is a clean fossil fuel and it pollutes nature & air much less than other fossil fuels and has a minimum greenhouse gas emission amount compared to other fossil sources.

2021 ◽  
Vol 73 (04) ◽  
pp. 18-21
Author(s):  
Pat Davis Szymczak

Natural gas is almost certain to be the fastest-growing fossil fuel in the global energy mix for decades to come, comprising 28% of the global energy mix by 2050. Together with renewables, natural gas will likely fuel 60% of global electricity production, be it as pipeline gas, liquefied natural gas (LNG), or blue hydrogen. These are among the forecasts that appear in the 2020 edition of the GECF (Gas Exporting Countries Forum) Global Gas Outlook 2050 released in February 2021 and providing short-, medium-, and long-term energy projections based on assumptions regarding macroeconomic conditions, energy prices, and policies. The report is updated yearly and is the flagship publication of the organization, which represents countries that control 71% of global gas reserves. It is unique in that it focuses exclusively on the global gas industry, which today is providing for 23% of global energy needs. Headquartered in Doha, Qatar, the GECF is an intergovernmental organization comprising 11 member countries and nine observer states, established in 2001 by Russia and Iran. Moscow and Tehran had hoped that GECF would eventually morph into a “Gas OPEC” but that never happened. The organization’s analyses and forecasts do, however, present a worthwhile snapshot of how the world’s largest gas producers see the industry. Member states in GECF include Algeria, Bolivia, Egypt, Equatorial Guinea, Iran, Libya, Nigeria, Qatar, Russia, Trinidad and Tobago, and Venezuela. Observer countries are Angola, Azerbaijan, Iraq, Kazakhstan, Malaysia, Norway, Oman, Peru, and the UAE. Unconventional Gas To Play Growing Role In its report, the GECF noted that unconventional resources will be playing a growing role in the market and that gas producers will need to emphasize unconventional projects to satisfy growing demand, as well as to invest heavily into exploration to identify and tap into new gas reserves and develop greenfield projects. “It is also important to highlight the increasing interest in hydrogen as a lever to support the deep decarbonization of the world’s economies,” Yury P. Sentyurin, GECF’s Secretary General, wrote in his introduction to the annual outlook. In mentioning hydrogen, Sentyurin is speaking about “blue hydrogen” which is produced from natural gas, and which, when combined with CCUS (carbon capture, utilization, storage) can marry commercial and environmental interests, further positioning natural gas as a transition fuel to bridge the gap between fossil fuels and renewable sources of energy. Blue hydrogen is in fact expected to satisfy half of the hydrogen demand projected worldwide by 2050, Sentyurin points out. Policies being set by countries in the European Union have focused more on costly “green hydrogen” produced from renewable sources; but not in the policies of other nations in regions of the world where growth in energy demand is expected to be the highest. Growth in European energy demand is largely flat.


2013 ◽  
pp. 109-128 ◽  
Author(s):  
C. Rühl

This paper presents the highlights of the third annual edition of the BP Energy Outlook, which sets out BP’s view of the most likely developments in global energy markets to 2030, based on up-to-date analysis and taking into account developments of the past year. The Outlook’s overall expectation for growth in global energy demand is to be 36% higher in 2030 than in 2011 and almost all the growth coming from emerging economies. It also reflects shifting expectations of the pattern of supply, with unconventional sources — shale gas and tight oil together with heavy oil and biofuels — playing an increasingly important role and, in particular, transforming the energy balance of the US. While the fuel mix is evolving, fossil fuels will continue to be dominant. Oil, gas and coal are expected to converge on market shares of around 26—28% each by 2030, and non-fossil fuels — nuclear, hydro and renewables — on a share of around 6—7% each. By 2030, increasing production and moderating demand will result in the US being 99% self-sufficient in net energy. Meanwhile, with continuing steep economic growth, major emerging economies such as China and India will become increasingly reliant on energy imports. These shifts will have major impacts on trade balances.


Author(s):  
Altan Kolbay

In this chapter, the correlation of growth in population, economic welfare, and increase in the energy demand is evaluated with examples. The biggest concern of mankind is which sources cover the immense energy demand. It is obvious that fossil fuels are the base energy source, and in order to supply developing energy needs, serious investments are needed in the energy sector. That is why the results of monetary aspects in energy prices and the conditions in leading supplier countries are also evaluated.


2017 ◽  
Vol 8 (2) ◽  
pp. 1-19 ◽  
Author(s):  
Alireza Aslani ◽  
Maryam Hamlehdar ◽  
Reza Saeedi

Energy has a strategic role in the social and economic development of the countries all over the world. Due to the high dependency on fossil fuels, fluctuations in prices and supply have macro/micro-economics effects for both energy exporters and importers. Therefore, understanding economic stability based on energy market changes is an important subject for policy makers and researchers. Norway, as a fossil fuel export country, is a good choice for the analysis of the relationships between the economics robustness and fossil fuel economics fluctuations. While the country is one of the pioneers in the field of sustainable energy utilization, they have tried to provide a robust economic situation for the oil exports revenues. In this article, the effects of energy changes on the economy are investigated in Norway. In this regard, first, the impact of oil price on macro-economic parameters is discussed. Afterwards, the main issues related to the energy economics including resilience of the energy sector, energy policies, economics analysis of the energy sector, and the electricity markets are discussed.


Author(s):  
Sudheer Awasthi ◽  
Naveen Adhikari

In spite of huge hydro-electricity potential, Nepal still relies on fossil fuel to meet its energy demand. However, as the pace of hydroelectricity generation gets momentum in recent years, there are concerns about the excess supply of hydroelectricity in the domestic market in the near future. In this context, this paper examines the potential substitution of conventional fuels by the hydroelectricity in Nepal. Using translog production function, this paper calculates the elasticity of substitution between hydroelectricity, coal, gas, petrol, diesel, and kerosene for the period of 1980 to 2016. Our findings suggest that all the fuels except kerosene are positively associated with economic growth during the study period, and the output elasticity of hydroelectricity is found be largest among these sources of energy. The findings also suggest that hydroelectricity has the potential for substitute other conventional fuels if the share of hydroelectricity is increased in the energy consumption composition. While there is not a huge variation in the elasticity of substitution between hydroelectricity and other fuels, the hydroelectricity has relatively higher potential to substitute coal followed by petrol, diesel, kerosene, and gas. The findings of the paper are supportive of the hypothesis that Nepal could potentially absorb the hydroelectricity generated in near future if incentive mechanisms are initiated that allow substitution of conventional fossil fuels by the hydroelectricity.


2011 ◽  
Vol 133 (01) ◽  
pp. 24-29 ◽  
Author(s):  
John Reilly ◽  
Allison Crimmins

This article predicts future global energy demand under a business-as-usual scenario. According to the MIT projections, conventional technology supported by fossil fuels will continue to dominate under a business-as-usual scenario. In fact, in the absence of climate policies that would impact energy prices, fossil fuels will supply nearly 80% of global primary energy demand in 2100. Alternative energy technologies will expand rapidly. Non-fossil fuel use will grow from 13% to 20% by 2100, with renewable electricity production expanding nearly tenfold and nuclear energy increasing by a factor of 8.5. However, those sources currently provide such a small share of the world's energy that even rapid growth is not enough to significantly displace fossil fuels. In spite of the growth in renewables, the projections indicate that coal will remain among the least expensive fuel sources. Non-fossil fuel alternatives, such as renewable energy and nuclear energy, will be between 40% and 80% more expensive than coal.


RSC Advances ◽  
2020 ◽  
Vol 10 (68) ◽  
pp. 41625-41679
Author(s):  
Bishwajit Changmai ◽  
Chhangte Vanlalveni ◽  
Avinash Prabhakar Ingle ◽  
Rahul Bhagat ◽  
Lalthazuala Rokhum

An ever-increasing energy demand and environmental problems associated with exhaustible fossil fuels have led to the search for an alternative energy. In this context, biodiesel has attracted attention worldwide as an alternative to fossil fuel.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 802 ◽  
Author(s):  
Manuel Antonio Díaz-Pérez ◽  
Juan Carlos Serrano-Ruiz

Concerns about depleting fossil fuels and global warming effects are pushing our society to search for new renewable sources of energy with the potential to substitute coal, natural gas, and petroleum. In this sense, biomass, the only renewable source of carbon available on Earth, is the perfect replacement for petroleum in producing renewable fuels. The aviation sector is responsible for a significant fraction of greenhouse gas emissions, and two billion barrels of petroleum are being consumed annually to produce the jet fuels required to transport people and goods around the world. Governments are pushing directives to replace fossil fuel-derived jet fuels with those derived from biomass. The present mini review is aimed to summarize the main technologies available today for converting biomass into liquid hydrocarbon fuels with a molecular weight and structure suitable for being used as aviation fuels. Particular emphasis will be placed on those routes involving heterogeneous catalysts.


2016 ◽  
Vol 23 (3) ◽  
pp. 377-386 ◽  
Author(s):  
Peter Burri

Abstract In spite of great progress in energy efficiency and in the development of renewable energy the world is likely to need significant amounts of fossil fuel throughout this century and beyond (the share of fossil fuels in the world mix has remained at about 86% of primary energy from 1990 to today). Gas, being the by far cleanest fossil fuel is the ideal bridging fuel to a world with predominantly renewable supplies. Thanks to the recent perfection of unconventional technologies there is no shortage of gas for this bridging function for at least the next 100-200 years. EASAC and several other European Institutions, notably the German Academy of Technical Sciences (acatech) have in the last few years carried out expert studies to assess the alleged environmental risks of unconventional hydrocarbon exploration and production. All these studies have, in agreement with other competent studies worldwide, come to the conclusion that there exists no scientific reason for a ban on hydraulic fracturing. With good practices, clear standards and adequate control the method causes no enhanced risks to the environment or the health of humans. Special attention has to be paid to the surface handling of drilling and fracking fluids. In Europe alone many thousand frac jobs have been carried out by the industry in the last 60 years without any severe accidents. The mishaps in North America have largely been the cause of unprofessional operations and human error. Especially in places with high air pollution, like many megacities of Asia, natural gas has to be seen as a unique chance to achieve a rapid improvement of the air quality and a significant reduction of CO2 emissions. This is also true for Europe where especially the use of domestic natural gas brings important benefits to the environment. The alternative to gas is in many regions of the world an increased consumption of coal, with all negative consequences.


2019 ◽  
Vol 4 (2) ◽  
pp. 130-142
Author(s):  
James Stodder

Carbon pricing will make Natural Gas the last fossil fuel. As is well-known, the carbon footprint of Oil is half-again as large, and the footprint of Coal is twice as large as that of Gas. Price sensitivities also imply that Gas producers bear relatively little of the total tax burden. As a result of the smaller tax on Gas, structured vector auto-regression (SVAR) simulations of a carbon tax show demand for Oil falling, with a rush for natural Gas. These simulations show that a modest ($40 per metric ton) carbon tax can be introduced gradually, avoiding price instability and achieving greater substitution into Gas than a tax ‘shock.’


Sign in / Sign up

Export Citation Format

Share Document