scholarly journals Unconventionals in Europe: Best Practice vs. Worst Case - The Conflict Between Facts and Public Perception

2016 ◽  
Vol 23 (3) ◽  
pp. 377-386 ◽  
Author(s):  
Peter Burri

Abstract In spite of great progress in energy efficiency and in the development of renewable energy the world is likely to need significant amounts of fossil fuel throughout this century and beyond (the share of fossil fuels in the world mix has remained at about 86% of primary energy from 1990 to today). Gas, being the by far cleanest fossil fuel is the ideal bridging fuel to a world with predominantly renewable supplies. Thanks to the recent perfection of unconventional technologies there is no shortage of gas for this bridging function for at least the next 100-200 years. EASAC and several other European Institutions, notably the German Academy of Technical Sciences (acatech) have in the last few years carried out expert studies to assess the alleged environmental risks of unconventional hydrocarbon exploration and production. All these studies have, in agreement with other competent studies worldwide, come to the conclusion that there exists no scientific reason for a ban on hydraulic fracturing. With good practices, clear standards and adequate control the method causes no enhanced risks to the environment or the health of humans. Special attention has to be paid to the surface handling of drilling and fracking fluids. In Europe alone many thousand frac jobs have been carried out by the industry in the last 60 years without any severe accidents. The mishaps in North America have largely been the cause of unprofessional operations and human error. Especially in places with high air pollution, like many megacities of Asia, natural gas has to be seen as a unique chance to achieve a rapid improvement of the air quality and a significant reduction of CO2 emissions. This is also true for Europe where especially the use of domestic natural gas brings important benefits to the environment. The alternative to gas is in many regions of the world an increased consumption of coal, with all negative consequences.

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 802 ◽  
Author(s):  
Manuel Antonio Díaz-Pérez ◽  
Juan Carlos Serrano-Ruiz

Concerns about depleting fossil fuels and global warming effects are pushing our society to search for new renewable sources of energy with the potential to substitute coal, natural gas, and petroleum. In this sense, biomass, the only renewable source of carbon available on Earth, is the perfect replacement for petroleum in producing renewable fuels. The aviation sector is responsible for a significant fraction of greenhouse gas emissions, and two billion barrels of petroleum are being consumed annually to produce the jet fuels required to transport people and goods around the world. Governments are pushing directives to replace fossil fuel-derived jet fuels with those derived from biomass. The present mini review is aimed to summarize the main technologies available today for converting biomass into liquid hydrocarbon fuels with a molecular weight and structure suitable for being used as aviation fuels. Particular emphasis will be placed on those routes involving heterogeneous catalysts.


2020 ◽  
Vol 114 ◽  
pp. 11-22
Author(s):  
Kevin D. Mohr ◽  
Gabriela Alvarez Avila ◽  
Carlos Solé ◽  
Kasturi Das

The title of our panel promises to explore whether investor-state dispute settlement (ISDS) is a barrier, a facilitator, or neither regarding the global fight against climate change. This is an issue of urgent concern because there is a growing consensus that the world economy needs to transition away from fossil fuels aggressively to avoid the worst case climate scenarios, which would require a massive flow of investment out of fossil fuel production and into the production of renewable energy sources (RES). Broadly speaking, state policymakers have two sets of tools at their disposal to encourage that transition: (1) tools to encourage investment in RES (carrots); and (2) tools to discourage investment and hasten divestment in hydrocarbon production (sticks). One way to frame the question is whether the ISDS system—designed as it is to protect foreign investment in a largely policy-neutral way—acts more as a facilitator of carrot-side policies, more as a barrier to stick-side policies, or neither? Put somewhat differently, does a strong ISDS system that would facilitate RES investment necessarily cause regulatory chill of stick-side policies aimed at divestment from fossil fuels, or is there a way to harmonize these seemingly divergent goals?


Radiocarbon ◽  
2021 ◽  
pp. 1-9
Author(s):  
Túlio César Aguiar Silva ◽  
Carla Carvalho ◽  
Bruno Libardoni ◽  
Kita Macario ◽  
Felippe Braga de Lima ◽  
...  

ABSTRACT Fossil fuels are of utmost importance to the world we live in today. However, their use can cause major impacts on the environment, especially on water resources. In this regard, algae have been intensively used as a strategy for remediation and monitoring of environmental pollution due to its efficient absorption of contaminants. In this work, samples of seaweed collected in Niterói/RJ—contaminated with kerosene and diesel—were analyzed by radiocarbon (14C) accelerator mass spectrometry (AMS) and by n-alkane quantification with gas chromatography to evaluate bioaccumulation in function of the dosage of contaminants. The biogenic content measured by radiocarbon analysis resulted in 95.6% for algae contaminated with 10 mL of kerosene and 67.6% for algae contaminated with 10 mL of diesel. The maximum intensity of n-C17 n-alkane in algae with 5 mL, 10 mL, and 15 mL of diesel was 768.2, 1878.1, and 5699.2 ng.g-1, respectively. While the maximum concentration of n-C27 in algae with 5 mL, 10 mL and 15 mL of kerosene was 3.3, 35.9, and 150.3 ng.g-1. We concluded that, for both contaminants, their incorporation into algae increases as the contamination dosage increases, making this methodology an effective technique for monitoring and remediation of urban aquatic ecosystems.


2019 ◽  
Vol 4 (2) ◽  
pp. 130-142
Author(s):  
James Stodder

Carbon pricing will make Natural Gas the last fossil fuel. As is well-known, the carbon footprint of Oil is half-again as large, and the footprint of Coal is twice as large as that of Gas. Price sensitivities also imply that Gas producers bear relatively little of the total tax burden. As a result of the smaller tax on Gas, structured vector auto-regression (SVAR) simulations of a carbon tax show demand for Oil falling, with a rush for natural Gas. These simulations show that a modest ($40 per metric ton) carbon tax can be introduced gradually, avoiding price instability and achieving greater substitution into Gas than a tax ‘shock.’


2021 ◽  
Vol 33 (9) ◽  
pp. 1985-1999
Author(s):  
K.A.V. Miyuranga ◽  
D. Thilakarathne ◽  
Udara S.P.R. Arachchige ◽  
R.A. Jayasinghe ◽  
N.A. Weerasekara

As the world population and modernization increase, energy demand increases. One of the non-sustainable energy sources is fossil fuels. However, fossil fuel consumption raises various environmental and economic issues. Most of the studies focus on sustainable energy sources, which can replace fossil fuel dependence. Biodiesel is an alternative sustainable fuel for diesel power. Biodiesel can produce through the transesterification process. Since the catalyst plays a significant role in the biodiesel yield during a defined reaction time, the addition of a catalyst can increases the reaction rate. This article is outlined the several catalysts used by multiple researchers over the years to increase biodiesel yields.


Author(s):  
Gert W. Basson ◽  
P. W. E. Blom

The world’s energy consumption is increasing constantly due to the growing population of the world. The increasing energy consumption has a negative effect on the fossil fuel reserves of the world. Hydrogen has the potential to provide energy for all our needs by making use of fossil fuel such as natural gas and nuclear-based electricity. Hydrogen can be produced by reforming methane with carbon dioxide as the oxidizing agent. Hydrogen can be produced in a Plasma-arc reforming unit making use of the heat energy generated by a 500 MWt Pebble Bed Modular Reactor (PBMR). The reaction in the unit takes place stoichiometrically in the absence of a catalyst. Steam can be added to the feed stream together with the Carbon Dioxide, which make it possible to control the H2/CO ratio in the synthesis gas between 1/1 and 3/1. This ratio of H2/CO in the synthesis gas is suitable to be used as feed gas to almost any chemical and petrochemical process. To increase the hydrogen production further, the Water-Gas Shift Reaction can be applied. A techno-economic analysis was performed on the non-catalytic plasma-arc reforming process. The capital cost of the plant is estimated at $463 million for the production of 1132 million Nm3/year of hydrogen. The production cost of hydrogen is in the order of $12.81 per GJ depending on the natural gas cost and the price of electricity.


Energy ◽  
2012 ◽  
Author(s):  
José Goldemberg

What are the fossil fuels? Fossil fuels—coal, petroleum, natural gas, and their by-products— account for approximately 85% of the world′s primary energy needs today. Use of these fuels drives industrialized economies and has become an integral part of every aspect of productive activity and...


2018 ◽  
Vol 3 (10) ◽  
pp. 66-69
Author(s):  
Chikwendu Ubani ◽  
Ubong Ikpaisong

Natural gas is a clean-burning, safe fuel that can save you money at the pump while benefitting the environment and reducing Nigeria’s dependence on petroleum. It is a naturally occurring mixture of gaseous hydrocarbon, non-gaseous non-hydrocarbons and gaseous non-hydrocarbons found in underground reservoir rocks either on its own (non-associated gas) or in association with crude oil (associated gas). Natural gas is today accepted as one of the best sources of energy for the world and for the future because of its environmentally-friendly nature compared to other kinds of fossil fuels. Nigeria is ranked as the seventh most natural gas endowed nation in the world and relaxes on number one spot in Africa as she seats on about one hundred and eighty-eight trillion cubic feet of natural gas deposits.Current opportunities to utilize gas in Nigeria include: Gas to reinjection schemes, Gas to power schemes, Gas to petrochemicals (as feedstock), LNG-Liquefied Natural Gas, LPG- Liquefied Petroleum Gas, and CNG- Compressed Natural Gas. The use of CNG as auto fuel in Nigeria presents so much benefits as have been highlighted in this paper with emphasis on the economic advantage. Compressed Natural Gas (CNG) is a product of compressing natural gas to one hundredth the volume it occupies at standard atmospheric pressure.A comprehensive economic analysis to determine the cost savings from driving a car on CNG against PMS considered the case of a motorist who covers an average of 100 km every day in the approximately thirty days that make a month was employed. Results established that running a car on CNG amounts to saving N1 143 daily and N34 284 monthly, the cost of converting the car from PMS - driven to CNG - driven is recovered before the end of the sixth month. From the sixth month to the end of the first year, savings of N211 402 is made. Savings of N411 408 is enjoyed each year after the first year.Running vehicles on CNG will greatly reduce the friction and troubles encountered in importing fuel into the country. This will also cut down largely the hardly available foreign exchange expended in bringing in PMS for fuelling vehicles. To this end, the Nigerian Government should as a matter of national development ensure legal and regulatory framework encompassing both technical and commercial aspects for natural gas utilization in Nigeria. Worthy of note is the aspect of gas gathering, gas transmission and distribution which will further encourage the planting of CNG refuelling stations that will serve the expected large fleet of natural gas vehicles. Currently, Green Gas Limited, a joint venture between Nigeria Gas Company (NGC) a Nigerian National Petroleum Corporation (NNPC) and NIPCO Plc. that has nine operational CNG refuelling stations and others under construction is the only company driving the CNG revolution in the country.


Energy ◽  
2012 ◽  
Author(s):  
José Goldemberg

Are fossil fuels being exhausted? Although fossil fuel reserves are very large, they are, by nature, exhaustible. As we have discussed previously, the expected life of presently identified reserves is 41 years for oil, 63 years for natural gas, and 147 years for coal....


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1900 ◽  
Author(s):  
Tiantian Liu ◽  
Xie He ◽  
Tadahiro Nakajima ◽  
Shigeyuki Hamori

Using a fresh empirical approach to time-frequency domain frameworks, this study analyzes the return and volatility spillovers from fossil fuel markets (coal, natural gas, and crude oil) to electricity spot and futures markets in Europe. In the time domain, by an approach developed by Diebold and Yilmaz (2012) which can analyze the directional spillover effect across different markets, we find natural gas has the highest return spillover effect on electricity markets followed by coal and oil. We also find that return spillovers increase with the length of the delivery period of electricity futures. In the frequency domain, using the methodology proposed by Barunik and Krehlik (2018) that can decompose the spillover effect into different frequency bands, we find most of the return spillovers from fossil fuels to electricity are produced in the short term while most of the volatility spillovers are generated in the long term. Additionally, dynamic return spillovers have patterns corresponding to the use of natural gas for electricity generation, while volatility spillovers are sensitive to extreme financial events.


Sign in / Sign up

Export Citation Format

Share Document