scholarly journals Synthesis and Characterization of CdS Slim Film Grown by CBD Method

Author(s):  
Vhadgal Gorakh Anna

Substance shower testimony strategy have been utilized to store Cadmium sulfide dainty film. The affect of the appropriate response temperature and PH is explored on this work. The introduction of CdS dainty film Cadmium Sulfate, Anomia, Thiourea and Double refined water is utilized as wellspring of material . Examining Electron microscopy (SEM ) is utilized for morphological attributes of CdS slender film. UV spectroscopy have been utilized for optical living arrangements of the CdS slender film .The band hole of CdS dainty film by methods for UV spectroscopy changed into 2.42 eV . The X-R diffraction investigation is affirmed that the CdS meager film were polycrystline with hexagonal shape the ideal direction of CdS slender film had been(002) and crystalline size 50nM .It changed into chose from the broadenings of corrousponding X-Ray diffraction tops by means of the utilization of Debye scherrer recipe.

2016 ◽  
Vol 847 ◽  
pp. 148-152
Author(s):  
Ju Long Chen ◽  
Guang Xing Liang ◽  
Ping Fan ◽  
Ting Ting Mao ◽  
Di Gu

The CH3NH3PbI3 light-absorbing layer shows preferably photovoltaic performance. However, comparing with CH3NH3PbI3 film, the CH3NH3SnI3 film show smaller band gap and wider light absorption range, meanwhile, it is non-toxic and environmental friendly solar cell material. In this paper, different proportions of tin (Sn) was doped into CH3NH3PbI3 film, the atomic ratio of lead-tin strictly controlled to form CH3NH3SnI3 from CH3NH3PbI3. The five different proportions of doping CH3NH3Pb1-xSnxI3 perovskite powders were studied. The morphology of powders was observed by scanning electron microscopy (SEM). X-ray diffraction (XRD) and energy dispersive spectrum (EDS) were used to analyze the crystallization and the proportion composition of powders, respectively. The experimental results show that the powder crystal orientation was very obvious at the ratio of lead-tin around 1:1.99 and the atomic ratio close to the ideal stoichiometric ratio of doped atoms.


2007 ◽  
Vol 121-123 ◽  
pp. 127-130
Author(s):  
Juan Liu ◽  
Yue Zhang ◽  
Jun Jie Qi ◽  
Yun Hua Huang ◽  
Xiao Mei Zhang

In-doped ZnO nanodisks were successfully fabricated by thermal evaporation Zn, In2O3 and graphite powder mixture without catalyst. Morphology, structures and components of ZnO nanodisks were investigated by SEM, HRTEM, EDS and X-Ray diffraction. ZnO nanodisks have perfect hexagonal shape, with 1~3μm size and 40~100 nm in thickness. The nanodisks are single-crystalline ZnO with wurtzite structure and In content of nanodisks reaches 2.2%. The growth along [0001] is suppressed leading to the formation of ZnO nanodisks. Room temperature photoluminescence spectra of the nanodisks shows that the UV emission peak blueshifts and becomes broader after doping.


2016 ◽  
Vol 701 ◽  
pp. 265-269 ◽  
Author(s):  
Md Shariful Islam ◽  
Fayeka Mansura ◽  
Amalina Muhammad Afifi ◽  
Bee Chin Ang

In this study, poly (vinyl alcohol) / chitosan blend nanofibers were synthesized by electrospinning process in different polyvinyl alcohol and chitosan weight ratios. The nanofibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and X-ray diffraction (XRD). SEM images showed that, 50:50 poly vinyl alcohol/chitosan blend was the ideal ratio for producing beadless nanofiber. The average diameter of the beadless nanofiber was found to be 123 nm. FTIR and XRD results demonstrated the presence of intermolecular hydrogen bonding between the molecules of poly vinyl alcohol and chitosan.


2013 ◽  
Vol 820 ◽  
pp. 7-10
Author(s):  
Zhong Biao Zhao ◽  
Peng Wang ◽  
Li Bo Fan ◽  
Zi Fa Chen ◽  
Zi Guan Shen

A PbS/CdS based photovoltaic cell was designed and characterized. The as-designed photovoltaic cell has a structure of Al/PbS/CdS/ITO/Glass. The CdS films were prepared by magnetron sputtering. The PbS films were synthesized by chemical bath deposition (CBD) method. The CdS and PbS films were characterized by X-ray diffraction (XRD) and photoelectrochemical (PEC) properties.


2015 ◽  
Vol 93 (9) ◽  
pp. 954-959 ◽  
Author(s):  
Sanehiro Muromachi ◽  
Masato Kida ◽  
Satoshi Takeya ◽  
Yoshitaka Yamamoto ◽  
Ryo Ohmura

The ionic clathrate hydrate of tetra-n-butylammonium (TBA) acrylate was characterized using single-crystal X-ray diffraction, elemental analysis, and nuclear magnetic resonance (NMR) spectroscopy. The crystal structure of TBA acrylate was Jeffrey’s type III and tetragonal P42/n, with a 33.076(7) × 33.076(7) × 12.170(2) Å3 unit cell. The volume of the unit cell was 13315(5) Å3, which is almost twice that of the ideal structure. The TBA cation was disordered and located in two types of fused cages. Although the acrylate anion was located in a pentagonal dodecahedral cage neighboring the TBA cation, there is a residual acrylate anion that could be around the other TBA cation in the unit cell. Solid-state 13C NMR spectra showed that the TBA cation was clearly disordered at 173 K, but not at 239 K. NMR peaks from the acrylate anion were not observed at either temperature. This is probably because of the strong restriction on the acrylate anion by hydrogen bonding with the lattice water. Some of the characteristics of the anion and cation of the ionic guest incorporated in the hydrate structure have yet to be defined. Further research is needed to clarify complexation of the ionic clathrate hydrate and the ionic guest, and the resulting structure.


2012 ◽  
Vol 538-541 ◽  
pp. 88-91
Author(s):  
Peng Ju Cao ◽  
Ping Fan ◽  
Guang Xing Liang ◽  
Zhuang Hao Zheng ◽  
Dong Ping Zhang ◽  
...  

CdS thin film was deposited onto glass substrates by the chemical bath deposition. The deposition temperature was maintained at 75 °C. The crystal structure, surface morphology, optical and electrical properties have investigated employing X-ray diffraction (XRD), scanning electron microscopy (SEM), spectrophotometer and seeback coefficient measurement, respectively. The XRD reveals CdS thin film grown at 75 °C has the mixed hexagonal and cubic structure. The optical band gap energy is 2.4 eV. The seeback coefficient is 197.3μV/k at room temperature. The electric resistivity of CdS thin film is in the order of 10000Ω•cm.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


Author(s):  
William H. Massover

The molecular structure of the iron-storage protein, ferritin, is becoming known in ever finer detail. The 24 apoferritin subunits (MW ca. 20,000) have a 2:1 axial ratio and are polymerized with 4:3:2 symmetry to form an outer shell surrounding a variable amount of microcrystalline iron, Recent x-ray diffraction results indicate that the projected outline of the native molecule has a quasi-hexagonal shape when viewed down the 3-fold axes of symmetry, and a quasi-square shape when looking down the 4-fold axes. To date, no electron microscope study has reported observing anything other than circular profiles, which would indicate that ferritin is strictly spherical. The apparent conflict between the "hollow sphere" of electron microscopy (E.M.) and the "truncated rhombic dodecahedron" of x-ray diffraction could reflect the poorer effective resolution of E.M. coming from radiation damage, staining, drying, etc. The present study investigates the detailed shape of individual ferritin molecules in order to search for the predicted aspherical profiles and to interpret the nature of this apparent contradiction.


2018 ◽  
Vol 2 (1) ◽  
pp. 7
Author(s):  
S Chirino ◽  
Jaime Diaz ◽  
N Monteblanco ◽  
E Valderrama

The synthesis and characterization of Ti and TiN thin films of different thicknesses was carried out on a martensitic stainless steel AISI 410 substrate used for tool manufacturing. The mechanical parameters between the interacting surfaces such as thickness, adhesion and hardness were measured. By means of the scanning electron microscope (SEM) the superficial morphology of the Ti/TiN interface was observed, finding that the growth was of columnar grains and by means of EDAX the existence of titanium was verified.  Using X-ray diffraction (XRD) it was possible to observe the presence of residual stresses (~ -3.1 GPa) due to the different crystalline phases in the coating. Under X-ray photoemission spectroscopy (XPS) it was possible to observe the molecular chemical composition of the coating surface, being Ti-N, Ti-N-O and Ti-O the predominant ones.


Sign in / Sign up

Export Citation Format

Share Document