Design and Characterization of PbS/CdS Based Photovoltaic Cell

2013 ◽  
Vol 820 ◽  
pp. 7-10
Author(s):  
Zhong Biao Zhao ◽  
Peng Wang ◽  
Li Bo Fan ◽  
Zi Fa Chen ◽  
Zi Guan Shen

A PbS/CdS based photovoltaic cell was designed and characterized. The as-designed photovoltaic cell has a structure of Al/PbS/CdS/ITO/Glass. The CdS films were prepared by magnetron sputtering. The PbS films were synthesized by chemical bath deposition (CBD) method. The CdS and PbS films were characterized by X-ray diffraction (XRD) and photoelectrochemical (PEC) properties.

2005 ◽  
Vol 475-479 ◽  
pp. 3721-3724
Author(s):  
W.L. Wang ◽  
K.J. Liao ◽  
Jian Zhang ◽  
P. Yu ◽  
G.B. Liu

In this paper, the optical properties and structure of CdS films were investigated by SEM, X-ray diffraction, and x-ray photoelectron spectroscopy. The CdS films in this study were deposited on the plane transparent glass by chemical bath deposition technique. The experimental results have shown that the annealing treatment has an important effect on the optical properties and structure of CdS films. This may be ascribed to decreasing surface contaminations and oxide content in the films.


Author(s):  
Vhadgal Gorakh Anna

Substance shower testimony strategy have been utilized to store Cadmium sulfide dainty film. The affect of the appropriate response temperature and PH is explored on this work. The introduction of CdS dainty film Cadmium Sulfate, Anomia, Thiourea and Double refined water is utilized as wellspring of material . Examining Electron microscopy (SEM ) is utilized for morphological attributes of CdS slender film. UV spectroscopy have been utilized for optical living arrangements of the CdS slender film .The band hole of CdS dainty film by methods for UV spectroscopy changed into 2.42 eV . The X-R diffraction investigation is affirmed that the CdS meager film were polycrystline with hexagonal shape the ideal direction of CdS slender film had been(002) and crystalline size 50nM .It changed into chose from the broadenings of corrousponding X-Ray diffraction tops by means of the utilization of Debye scherrer recipe.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2731 ◽  
Author(s):  
Yen-Lin Chu ◽  
Sheng-Joue Young ◽  
Liang-Wen Ji ◽  
Tung-Te Chu ◽  
Po-Hao Chen

Nanogenerators (NGs) based on Ni-doped ZnO (NZO) nanorod (NR) arrays were fabricated and explored in this study. The ZnO films were grown on indium tin oxide (ITO) glass substrates, and the NZO NRs were prepared by the chemical bath deposition (CBD) method. The samples were investigated via field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) spectral analysis. The results showed that the growth of NRs presented high-density single crystalline structures and were preferentially oriented in the c-axis direction. The optical characteristics of the NZO NRs were also measured by photoluminescence (PL) spectra. All samples exhibited two different emissions, including ultraviolet (UV) and green emissions. ITO etching paste was used to define patterns, and an electrode of Au film was evaporated onto the ITO glass substrates by the electron beam evaporation technique to assemble the NG device. In summary, ZnO NRs with Ni dopant (5 mM) showed significantly excellent performance in NGs. The optimal measured voltage, current, and power for the fabricated NGs were 0.07 V, 10.5 µA, and 735 nW, respectively.


1994 ◽  
Vol 339 ◽  
Author(s):  
X. T. Cui ◽  
Z. H. Zhang ◽  
Q. Y. Chen ◽  
F. Romero-Borja ◽  
J. R. Liu ◽  
...  

ABSTRACTCNx films with x around 1.0 have been made by inverted cylindrical DC magnetron sputtering. RBS, XPS, IR spectroscopy, ERD and SEM were used to characterize the composition and bonding properties of the films, while X-ray diffraction was used for crystal structure determination. XPS data indicated the existence of the tetrahedral C3N4 phase in the CNx films, which was consistent with the C-N single bond suggested by IR spectra. The annealing effect on CNx films will also be discussed.


2012 ◽  
Vol 581-582 ◽  
pp. 540-543
Author(s):  
Jin Long Jiang ◽  
Di Chen ◽  
Wei Jun Zhu

Quaternary Ti-Si-C-N films were deposited Si wafer by middle frequency magnetron sputtering Ti80Si20 twin-targets in mixture atmosphere of Ar, CH4 and N2. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) results indicate that the films present an amorphous structure with no columnar structure. These films are quite uniform and dense without large particles. The film deposited at 10 sccm CH4 and 10 sccm N2 flow rates exhibits a maximum hardness of 18.9 GPa and high elastic recovery of 97%.


2013 ◽  
Vol 832 ◽  
pp. 596-601 ◽  
Author(s):  
N.A.M. Asib ◽  
Aadila Aziz ◽  
A.N. Afaah ◽  
Mohamad Rusop ◽  
Zuraida Khusaimi

Needle-like zinc oxide (ZnO) nanostructures was deposited on titanium dioxide (TiO2) nanoparticles by solution-immersion method and Radio Frequency (RF) magnetron sputtering with diffferent RF powers, respectively on a glass substrate to synthesis nanocomposites of ZnO/TiO2. Field Emission Scanning Electrons Microscope (FESEM) images demonstrate that needle-like ZnO (112-1110 nm) are deposited on the surface of the TiO2nanoparticles with the diameter of approximately 36.3-62.9 nm. At 200 W, more needle-like ZnO with smallest average diameter (112 nm) appeared on the TiO2nanoparticles, which also has the smallest average size of 36.3 nm The compositions of elements in the nanocomposites were showed by Energy Dispersive X-ray Spectrometry (EDX). All elements of Ti, O, and Zn are observed as major components which confirm the presence of TiO2and ZnO in the composite. X-ray Diffraction (XRD) patterns of the nanocomposites show ZnO formed on TiO2nanoparticles are hexagonal with a wurtzite structure and it revealed ZnO/TiO2thin films were succesfully deposited as nanocomposites of ZnTiO3at 100 W,Zn2TiO4at 150 W and Zn2Ti3O8at 200 W and above.


2015 ◽  
Vol 772 ◽  
pp. 62-66 ◽  
Author(s):  
R. Steigmann ◽  
N. Iftimie ◽  
A. Savin

Zinc oxide nanostructured materials, such as films and nanoparticles, could provide a suitable platform for development of high performance biosensing material due to their unique fundamental material properties. This paper presents the characterization of ZnO thin film as biosensing material by metallic strip grating structure (MSG), for the real-time detection. In this work, high quality ZnO films were grown on ITO/glass substrates by vacuum thermal evaporation method. We characterized by X-ray diffraction (XRD) the film crystalline quality and by scanning electron microscopy (SEM) the film morphology.


2017 ◽  
Vol 751 ◽  
pp. 489-493 ◽  
Author(s):  
Patamaporn Termsaithong ◽  
Aphichart Rodchanarowan

In this study, the synthesis of the ternary semiconductor sensitized silver bismuth telluride (AgBiTe2: SBT) particles was produced in the solution of AgNO3, Bi (NO3)3×5H2O and Na2O3Te by using a chemical bath deposition (CBD) method and annealing at 200°C for 1 h. According to scanning electron microscopy (SEM), the particle size of SBT after annealing was bigger than before annealing. Based on X-ray diffraction, the SBT after annealing for 1h became more crystalline. In addition, the XRF data also demonstrated that the SBT powder consists of Ag, Bi, and Te as dominant elements. The XRD result confirms a successful growth of the SBT particles with rhombohedral crystal structure. Based on the obtaining results, the SBT particles were successfully synthesized and potentially applied for solar cell application.


2013 ◽  
Vol 820 ◽  
pp. 3-6 ◽  
Author(s):  
Zhong Biao Zhao ◽  
Peng Wang ◽  
Li Bo Fan ◽  
Zi Fa Chen ◽  
Dong Luo Yang

A Lead sulfide (PbS) film synthesized by ultrasonic wave assisted chemical bath deposition (CBD) method. The as-deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) measurements. The photoelectrochemical (PEC) cell, with PbS/ITO/glass as a photo cathode and Na2SO4 (0.10 M) solution as an electrolyte, was constructed and investigated for PEC properties. The film shows a p-type conduction mechanism.


2019 ◽  
Vol 10 (1) ◽  
pp. 1-7 ◽  
Author(s):  
L. F. Koao ◽  
Fekadu Gashaw Hone ◽  
F. B. Dejene

AbstractCrystalline lead sulfide (PbS) nanowires doped with terbium (Tb3+) ions were synthesized by the chemical bath deposition method at room temperature. The powder was obtained from an aqueous solutions using lead acetate dehydrate, terbium nitrate, thiourea, potassium hydroxide and ammonia. The terbium molar concentrations were varied in the deposition process to investigate the effect on the structural, optical, morphological and luminescent properties of PbS nanowires. The crystalline size was found to be dependent on the concentration of the Tb3+ ions used. The estimated average crystalline sizes were calculated from the X-ray diffraction and found to be 34, 33 and 37 nm for PbS: 0% Tb3+, PbS: 0.2% Tb3+ and PbS: 0.5% Tb3+, respectively. The scanning electron microscopy micrographs depict nanowire shape for the undoped as well as Tb-doped samples. The energy-dispersive X-ray and Auger electron spectroscopy analyses confirmed the presence of all the expected elements. The solid powder nanowires exhibited high absorptions in the UV–Vis regions. The band gap energies were estimated in the range of 1.99–2.46 eV. The absorption edge and the band gap energies of these PbS nanowires have shifted depending on the concentration of the dopant. The maximum luminescence intensity was obtained for PbS: 0.2% Tb3+ ions and luminescent quenching was observed for higher terbium concentrations. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document