Cr VI Removal by Using Agricultural Waste (Modified Canola Meal & Crude Canola Meal) from Aqueous Solutions: Kinetic, Isotherm and Thermodynamic Study

2016 ◽  
Vol 6 (2) ◽  
pp. 45-50
Author(s):  
Moradi Roya ◽  
Roya Nezakati Esmailzadeh ◽  
Tahmineh Taheri ◽  
Elham Ramezanali ◽  
Azam Mehdipour

Metal Cr and CrIII components usually are not harmful but CrVI is poisonous in case it is swallowed. Half of a tea spoon of Cr VI is fatal. Plating industry and waste waters polluted with CrVI are considered as one of the most im-portant sources of its exposal and emission. Today Bio- absorbents are sub-jects of studies to resolve the above issues. This paper is to study kinetic, isotherm and thermodynamic analysis of Cr adsorption via applying canola meal. Effective parameters in adsorption such as: pH, contact time, adsor-bent dose, temperature and initial concentration of CrVI metal are consid-ered as independent variables and final concentration of Cr VI is considered as dependent variable. Changing one variable while keeping other variables constant is a basic principle in every experiment. The best adsorption effi-ciency of crude canola was obtained in pH 7 and for canola modified with CTAB in pH 2. The optimum dose of adsorbent for both crude and modified canola was equal to 0.150g/L. also the best contact time was 60 minutes. Maximum adsorption obtained in 12.5 mg/lit CrVI concentration and in 60°c. With respect to capacity of Cr VI adsorption in canola meal it can be applied to remove the CrVI and similar pollutants from water and waste water.

2021 ◽  
Author(s):  
Siti Nor Atika Baharin ◽  
Nurul Hafawati Hashim ◽  
Izyan Najwa Mohd Norsham ◽  
Syed Shahabuddin ◽  
Kavirajaa Pandian Sambasevam

Abstract The present study highlights the sunlight-assisted photodegradation of methylene blue (MB) using tungsten disulphide/polypyrrole (WS2/PPy) composite as a photocatalyst. WS2/PPy was prepared via oxidative polymerization using ferric chloride (FeCl3) as an oxidant. Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM) measurement were used to ensure the physicochemical properties of WS2/PPy. The photocatalytic efficiencies of the photocatalysts were examined by degrading methylene blue (MB) under sunlight irradiation. The results showed that the degradation efficiency of WS2/PPy was higher than the pristine PPy Several optimizations such as effect of the concentration, contact time, photocatalyst dosage and initial concentration were investigated. The results revealed that, under optimum condition of pH 3, 100 mg photocatalyst dosage, 10 ppm MB initial concentration within 180 minutes contact time, were the most effective parameters, that produced 96.15% of sunlight-assisted photodegradation in aqueous solution of MB.


2014 ◽  
Vol 661 ◽  
pp. 51-57
Author(s):  
Mohd Zawawi Mohamad Zulhelmi ◽  
Alrozi Rasyidah ◽  
Senusi Faraziehan ◽  
Mohamad Anuar Kamaruddin

Biosorption process is considered as economical treatment to remove metal from the aqueous solution compared to other established methods. In this study, Saccharomyces cerevisiae was used as biosorbent and subject to immobilization process which consists of ethanol treatment for the removal of binary metals, lead (II) and nickel (II) from aqueous solution. Response surface methodology (RSM) was used to optimize effective parameters condition and the interaction of two or more parameters in order to obtain high removal of the binary metals. The parameters that have been studied were initial concentration of binary metals solution (10 - 60 mg/L), biosorbent dosage (0.2 - 1.0 g), pH (pH 2 - pH 6) and contact time (30 - 360 minutes) towards lead (II) and nickel (II) ions removal. Based on analysis of variance (ANOVA), biosorbent dosage, solution pH and contact time factor were found significant for both responses. Through optimization procedure, the optimum condition for lead (II) and nickel (II) ions removal were obtained at initial concentration of 10.0 mg/L, biosorbent dosage of 1.0 g, solution pH of pH 6, and contact time of 360.00 minutes, which resulted in 95.08 % and 21.09 % removal of lead (II) and nickel (II) ions respectively.


Author(s):  
Bahman Hassan-Zadeh ◽  
Reza Rahmanian ◽  
Mohammad Hossein Salmani ◽  
Mohammad Javad Salmani

Introduction: Nanoporous silica has received growing interest for its unique application potential in pollutant removal. Therefore, the development of a simple technique is required to synthesize and functionalize the nanoporous materials for industrial application. Materials and Methods: The synthesis of nanoporous silica was investigated by the template sol-gel method, and it functionalized as an adsorbent for adsorption of malachite green. The morphology and structure of the prepared and functionalized nanoporous silica were studied using X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), and nitrogen adsorption-desorption technique. Subsequently, the effective parameters such as solution pH, contact time, and initial concentration on the adsorption process were optimized by adsorption tests. Results: The results showed that high-order nanoporous silica had been produced with an average diameter of 20.12 nm and average pore volume of 1.04 cm3.g−1. It was found that the optimum parameters of pH, initial concentration and contact time for malachite green adsorption on nanoporous silica were 6.5, 10 mg.l-1, and 60 min, respectively. The experimental data confirmed the Freundlich model (R2 = 0.995) and the obtained kinetic data followed the pseudo-first-order equation. The maximum adsorption capacity calculated by Langmuir isotherm was found to be 116.3 mg.g-1. Conclusion: The high adsorption capacity showed that the acid-functionalized nanoporous silica adsorbent can be used as an adequate adsorbent to remove malachite green from aquatic environments. The large surface area can be suggested that the silica nanoporous will have potential application prospects as the adsorbent.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3150
Author(s):  
Mengwei Xu ◽  
Chao Huang ◽  
Jing Lu ◽  
Zihan Wu ◽  
Xianxin Zhu ◽  
...  

Magnetic MXene composite Fe3O4@Ti3C2 was successfully prepared and employed as 17α-ethinylestradiol (EE2) adsorbent from water solution. The response surface methodology was employed to investigate the interactive effects of adsorption parameters (adsorption time, pH of the solution, initial concentration, and the adsorbent dose) and optimize these parameters for obtaining maximum adsorption efficiency of EE2. The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA) and t-test statistics. Optimization of the process variables for maximum adsorption of EE2 by Fe3O4@Ti3C2 was performed using the quadratic model. The model predicted maximum adsorption of 97.08% under the optimum conditions of the independent variables (adsorption time 6.7 h, pH of the solution 6.4, initial EE2 concentration 0.98 mg L−1, and the adsorbent dose 88.9 mg L−1) was very close to the experimental value (95.34%). pH showed the highest level of significance with the percent contribution (63.86%) as compared to other factors. The interactive influences of pH and initial concentration on EE2 adsorption efficiency were significant (p < 0.05). The goodness of fit of the model was checked by the coefficient of determination (R2) between the experimental and predicted values of the response variable. The response surface methodology successfully reflects the impact of various factors and optimized the process variables for EE2 adsorption. The kinetic adsorption data for EE2 fitted well with a pseudo-second-order model, while the equilibrium data followed Langmuir isotherms. Thermodynamic analysis indicated that the adsorption was a spontaneous and endothermic process. Therefore, Fe3O4@Ti3C2 composite present the outstanding capacity to be employed in the remediation of EE2 contaminated wastewaters.


2013 ◽  
Vol 684 ◽  
pp. 194-197
Author(s):  
Yi Ke Li ◽  
Bing Lu Zhao ◽  
Wei Xiao ◽  
Run Ping Han ◽  
Yan Qiang Li

The effect of contact time and the determination of the kinetic parameters of adsorption of methyl orange (MO) from aqueous solution onto Iron-Oxide-Coated-Zeolite (IOCZ) powder are important in understanding the adsorption mechanism. The effect of contact time on adsorption quantity was studied at different initial concentration and temperature, respectively. The pseudo-second-order model was adopted to fit the experimental data using non-linear regressive analysis and it was used to predict the adsorption behavior. The results showed that the process of adsorption MO was endothermic and chemisorption. The pore diffusion was not significant.


2012 ◽  
Vol 66 (8) ◽  
pp. 1699-1707 ◽  
Author(s):  
A. K. Giri ◽  
R. K. Patel ◽  
P. C. Mishra

In this work, the biosorption of As(V) from aqueous solutions by living cells of Bacillus cereus has been reported. The batch biosorption experiments were conducted with respect to biosorbent dosage 0.5 to 15 g/L, pH 2 to 9, contact time 5 to 90 min, initial concentration 1 to 10 mg/L and temperature 10 to 40 °C. The maximum biosorption capacity of B. cereus for As(V) was found to be 30.04 at pH 7.0, at optimum conditions of contact time of 30 min, biomass dosage of 6 g/L, and temperature of 30 ± 2 °C. Biosorption data were fitted to linearly transformed Langmuir isotherms with R2 (correlation coefficient) &gt;0.99. Bacillus cereus cell surface was characterized using AFM and FTIR. The metal ions were desorbed from B. cereus using both 1 M HCl and 1 M HNO3. The pseudo-second-order model was successfully applied to predict the rate constant of biosorption.


2017 ◽  
Vol 76 (6) ◽  
pp. 1466-1473 ◽  
Author(s):  
M. H. Salmani ◽  
M. Mokhtari ◽  
Z. Raeisi ◽  
M. H. Ehrampoush ◽  
H. A. Sadeghian

Wastewater containing pharmaceutical residual components must be treated before being discharged to the environment. This study was conducted to investigate the efficiency of tungsten-carbon nanocomposite in diclofenac removal using design of experiment (DOE). The 27 batch adsorption experiments were done by choosing three effective parameters (pH, adsorbent dose, and initial concentration) at three levels. The nanocomposite was prepared by tungsten oxide and activated carbon powder in a ratio of 1 to 4 mass. The remaining concentration of diclofenac was measured by a spectrometer with adding reagents of 2, 2′-bipyridine, and ferric chloride. Analysis of variance (ANOVA) was applied to determine the main and interaction effects. The equilibrium time for removal process was determined as 30 min. It was observed that the pH had the lowest influence on the removal efficiency of diclofenac. Nanocomposite gave a high removal at low concentration of 5.0 mg/L. The maximum removal for an initial concentration of 5.0 mg/L was 88.0% at contact time of 30 min. The results of ANOVA showed that adsorbent mass was among the most effective variables. Using DOE as an efficient method revealed that tungsten-carbon nanocomposite has high efficiency in the removal of residual diclofenac from the aqueous solution.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mulu Berhe Desta

Adsorption of heavy metals (Cr, Cd, Pb, Ni, and Cu) onto Activated Teff Straw (ATS) has been studied using batch-adsorption techniques. This study was carried out to examine the adsorption capacity of the low-cost adsorbent ATS for the removal of heavy metals from textile effluents. The influence of contact time, pH, Temperature, and adsorbent dose on the adsorption process was also studied. Results revealed that adsorption rate initially increased rapidly, and the optimal removal efficiency was reached within about 1 hour. Further increase in contact time did not show significant change in equilibrium concentration; that is, the adsorption phase reached equilibrium. The adsorption isotherms could be fitted well by the Langmuir model. The value in the present investigation was less than one, indicating that the adsorption of the metal ion onto ATS is favorable. After treatment with ATS the levels of heavy metals were observed to decrease by 88% (Ni), 82.9% (Cd), 81.5% (Cu), 74.5% (Cr), and 68.9% (Pb). Results indicate that the freely abundant, locally available, low-cost adsorbent, Teff straw can be treated as economically viable for the removal of metal ions from textile effluents.


2021 ◽  
Vol 37 (1) ◽  
pp. 65-70
Author(s):  
Aram Dokht Khatibi ◽  
Kethineni Chandrika ◽  
Ferdos Kord Mostafapour ◽  
Ali Akbar Sajadi ◽  
Davoud Balarak

Conventional wastewater treatment is not able to effectively remove Aromatic hydrocarbons such as Naphthalene, so it is important to remove the remaining antibiotics from the environment. The aim of this study was to evaluate the efficiency of UV/ZnOphotocatalytic process in removing naphthalene antibiotics from aqueous solutions.This was an experimental-applied study that was performed in a batch system on a laboratory scale. The variables studied in this study include the initial pH of the solution, the dose of ZnO, reaction time and initial concentration of Naphthalene were examined. The amount of naphthalene in the samples was measured using GC.The results showed that by decreasing the pH and decreasing the initial concentration of naphthalene and increasing the contact time, the efficiency of the process was developed. However, an increase in the dose of nanoparticles to 0.8 g/L had enhance the efficiency of the process was enhanced, while increasing its amount to values higher than 0.8 g/L has been associated with a decrease in removal efficiency.The results of this study showed that the use of UV/ZnOphotocatalytic process can be addressed as a well-organized method to remove naphthalene from aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document