scholarly journals Batch Sorption Experiments: Langmuir and Freundlich Isotherm Studies for the Adsorption of Textile Metal Ions onto Teff Straw (Eragrostis tef) Agricultural Waste

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mulu Berhe Desta

Adsorption of heavy metals (Cr, Cd, Pb, Ni, and Cu) onto Activated Teff Straw (ATS) has been studied using batch-adsorption techniques. This study was carried out to examine the adsorption capacity of the low-cost adsorbent ATS for the removal of heavy metals from textile effluents. The influence of contact time, pH, Temperature, and adsorbent dose on the adsorption process was also studied. Results revealed that adsorption rate initially increased rapidly, and the optimal removal efficiency was reached within about 1 hour. Further increase in contact time did not show significant change in equilibrium concentration; that is, the adsorption phase reached equilibrium. The adsorption isotherms could be fitted well by the Langmuir model. The value in the present investigation was less than one, indicating that the adsorption of the metal ion onto ATS is favorable. After treatment with ATS the levels of heavy metals were observed to decrease by 88% (Ni), 82.9% (Cd), 81.5% (Cu), 74.5% (Cr), and 68.9% (Pb). Results indicate that the freely abundant, locally available, low-cost adsorbent, Teff straw can be treated as economically viable for the removal of metal ions from textile effluents.

Author(s):  
Sirajo L ◽  
Musa L. ◽  
Ndanusa I. A.

Adsorption of heavy metal cationic ions (Cr, Pb, and Cu) onto coconut husk carbon (CHC) adsorbent has been studied using batch-adsorption method. The study was carried out to investigate the adsorption kinetic and adsorption isotherm of the coconut husk adsorbent for the removal of heavy metals in waste liquid effluent. The influence of pH, contact time, adsorbent dose, and adsorbent concentration, and temperature on the adsorption process was also studied. Results indicated an initial increase in adsorption rate, and optimal removal of heavy metal was reached within 70 minutes, further increase in contact time and temperature show significant change in equilibrium concentration. Also, further increase in adsorbent dosage revealed significant change in the sorption capacity of the CHC. The adsorption isotherms could be fitted well by both Langmuir and Freundlich models. The RI (equilibrium parameter) value in the present investigation was less than 1 (one) which indicates that the adsorption of the heavy metals ions on the CHC is favorable. The value of n for this study which indicates the degree of non-linearity between solution concentration and adsorption were 0.31–0.39, this result indicated that the adsorption of heavy metals onto the CHC is a chemical sorption. After treatment of synthetic heavy metal solution with the CHC, the adsorption isotherm model analysis revealed that the adsorption capacity (b) of CHC for the heavy metal were 89 mg/L (Cr), 125.5 mg/L (Pb), and 129.7 mg/L (Cu). Conclusively, the results indicate that the freely abundant agricultural waste-coconut husk can be treated for heavy metal adsorption but it’s not economically viable because it’s not renewable due to the chemisorption nature of the adsorption process.


2019 ◽  
Author(s):  
Chem Int

A study of removal of heavy metal ions from heavy metal contaminated water using agro-waste was carried out with Musa paradisiaca peels as test adsorbent. The study was carried by adding known quantities of lead (II) ions and cadmium (II) ions each and respectively into specific volume of water and adding specific dose of the test adsorbent into the heavy metal ion solution, and the mixture was agitated for a specific period of time and then the concentration of the metal ion remaining in the solution was determined with Perkin Elmer Atomic absorption spectrophotometer model 2380. The effect of contact time, initial adsorbate concentration, adsorbent dose, pH and temperature were considered. From the effect of contact time results equilibrium concentration was established at 60minutes. The percentage removal of these metal ions studied, were all above 90%. Adsorption and percentage removal of Pb2+ and Cd2+ from their aqueous solutions were affected by change in initial metal ion concentration, adsorbent dose pH and temperature. Adsorption isotherm studies confirmed the adsorption of the metal ions on the test adsorbent with good mathematical fits into Langmuir and Freundlich adsorption isotherms. Regression correlation (R2) values of the isotherm plots are all positive (>0.9), which suggests too, that the adsorption fitted into the isotherms considered.


2020 ◽  
Vol 13 (2) ◽  
pp. 15-27 ◽  
Author(s):  
Bolanle M. Babalola ◽  
Adegoke O. Babalola ◽  
Cecilia O. Akintayo ◽  
Olayide S. Lawal ◽  
Sunday F. Abimbade ◽  
...  

Abstract. In this study, the adsorption of Ni(II) and Cu(II) ions from aqueous solutions by powdered Delonix regia pods and leaves was investigated using batch adsorption techniques. The effects of operating conditions such as pH, contact time, adsorbent dosage, metal ion concentration and the presence of sodium ions interfering with the sorption process were investigated. The results obtained showed that equilibrium sorption was attained within 30 min of interaction, and an increase in the initial concentration of the adsorbate, pH and adsorbent dosage led to an increase in the amount of Ni(II) and Cu(II) ions adsorbed. The adsorption process followed the pseudo-second-order kinetic model for all metal ions' sorption. The equilibrium data fitted well with both the Langmuir and Freundlich isotherms; the monolayer adsorption capacity (Q0 mg g−1) of the Delonix regia pods and leaves was 5.88 and 5.77 mg g−1 for Ni(II) ions respectively and 9.12 and 9.01 mg g−1 for Cu(II) ions respectively. The efficiency of the powdered pods and leaves of Delonix regia with respect to the removal of Ni(II) and Cu(II) ions was greater than 80 %, except for the sorption of Ni(II) ions onto the leaves. The desorption study revealed that the percentage of metal ions recovered from the pods was higher than that recovered from the leaves at various nitric acid concentrations. This study proves that Delonix regia biomass, an agricultural waste product (“agro-waste”), could be used to remove Ni(II) and Cu(II) ions from aqueous solution.


2020 ◽  
Vol 32 (4) ◽  
pp. 727-732
Author(s):  
Harish Sharma ◽  
Rajesh Kumar ◽  
Mahesh Chandra Vishwakarma ◽  
Sushil Kumar Joshi ◽  
Narender Singh Bhandari

In present study, Pyras pashia leaves were used as low cost biosorbent to study biosorption of Cu(II), Pb(II) and Cd(II) ions from contaminated wastewater. In the employed batch methods pH, contact time, metal ion concentration, temperature, biosorbent doses were taken as study parameters. The pH was varied from pH 1-9 to study the influence of pH on biosorption of metal ions by Pyras pashia. The optimum pH for the removal of Cu(II), Pb(II) and Cd(II) is observed at pH 5. The biosorption equilibrium time was varied between 15-75 min. Langmuir, Freundlich and Temkin isotherms were employed to study the biosorption. The biosorption parameter fits well with Langmuir isotherm. The biosorption of metal ions was increased with increasing biosorbent dose and contact time while increase in pH, metal ion concentration and temperature decrease the biosorption. Thermodynamic data suggest that the bisorption process was spontaneous, feasible and endothermic.


Author(s):  
Gharde B. D. ◽  
Gharde A. D.

Concentration of water supplies with metals is constant area of concern naturally an international. The challenge to remediate hazardous metals containing waste stream from present formal mining operation, industrial sites and ground water is immersed. Adsorption has proved to be an accelerate way to treat industrial waste effluents. The heavy metals renders the water unsuitable for drinking and also higher toxic to human being. Removal of these material is therefore essential. The studies pertaining to the use of inexpensive agro based adsorbents, such as tree bark, saw dust, Corn cob, straw and fly ashes for heavy metals ions has been investigated using Mangifeara indica substrate through batch adsorption studies. Result obtained are quite encouraging, batch adsorption studies have shown that removal of metal ions is dependent upon process parameters like contact time, temperature, metal ions concentration, dosage and pH. The maximum removal of Co2+ to the extent of has been achieved at pH 4 to 6 in 30 min in the concentration range 30 to 90 mg/liter. The use of packed column adsorption has been investigated at the optimum condition, to study the feasibility of the process s for application in small scale industries.


2016 ◽  
Vol 6 (3) ◽  
pp. 377-388 ◽  
Author(s):  
Ibrahim Umar Salihi ◽  
Shamsul Rahman Muhamed Kutty ◽  
Muhamed Hasnain Isa ◽  
Nasir Aminu

Pollution caused by heavy metals has become a serious problem to the environment nowadays. The treatment of wastewater containing heavy metals continues to receive attention because of their toxicity and negative impact on the environment. Recently, various types of adsorbents have been prepared for the uptake of heavy metals from wastewater through the batch adsorption technique. This study focused on the removal of zinc from aqueous solution using microwave incinerated sugarcane bagasse ash (MISCBA). MISCBA was produced using microwave technology. The influence of some parameters such as pH, contact time, initial metal concentration and adsorbent dosage on the removal of zinc was investigated. The competition between H+ and metal ions has affected zinc removal at a low pH value. Optimum conditions for zinc removal were achieved at pH 6.0, contact time 180 min and adsorbent dosage of 10 g/L, respectively. The maximum adsorption capacity for the removal of zinc was found to be 28.6 mg/g. The adsorption process occurred in a multilayered surface of the MISCBA. Chemical reaction was the potential mechanism that regulates the adsorption process. MISCBA can be used as an effective and cheap adsorbent for treatment of wastewater containing zinc metal ions.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1316 ◽  
Author(s):  
Rabia Baby Shaikh ◽  
Bullo Saifullah ◽  
Fawad Rehman ◽  
Ruqia Iqbal Shaikh

The presence of inorganic pollutants such as metal ions (Ni2+, Pb2+, Cr6+) in water, probably by long-term geochemical changes and from the effluents of various industries, causes diseases and disorders (e.g., cancer, neurodegenerative diseases, muscular dystrophy, hepatitis, and multiple sclerosis). Conventional methods for their removal are limited by technical and economic barriers. In biosorption, low-cost and efficient biomaterials are used for this purpose. In this study, Brassica Campestris stems from the agriculture waste and has been used for the removal of Ni2+, Cr6+ and Pb2+ ions from an aqueous solution containing all the ions. Effect of different parameters, e.g., pH, contact time, metal ion initial concentration, adsorbent dose, agitation rate and temperature were analyzed and optimized. The adsorbent worked well for removal of the Pb2+ and Cr6+ as compared to Ni2+. The atomic absorption spectrophotometer (AAS) and FTIR investigation of adsorbent before and after shows a clear difference in the adsorbent capability. The highest adsorption percentage was found at 98%, 91%, and 49% respectively, under the optimized parameters. Furthermore, the Langmuir isotherm was found better in fitting to the experimental data than that of the Freundlich isotherm.


2020 ◽  
Vol 997 ◽  
pp. 113-120
Author(s):  
Hafizah Binti Naihi

The extensive use of heavy metals such as copper in various industries has discharged a large amount of the metals into the environment which is toxic at higher concentrations. The use of low-cost agricultural waste of biological origin such as tea waste may be an economic solution to this problem. Tea waste is among the potential material to be developed as an adsorbent for heavy metal ions. Tea waste contains cellulose and lignin which have been reported having an excellent metal binding capacity. This study aims to use tea waste for the removal of Cu2+ ions. The effect of variation in different parameters like initial concentration of Cu2+ ions in solution, adsorbent dosage and contact time were investigated using batch adsorption method. The adsorbent, tea waste was characterized using a compound microscope and FTIR spectroscopy. Experimental results showed that the maximum removal of the copper ion by tea waste at optimum condition (pH 7, 60 min. contact time, 0.8 g adsorbent dose and 0.7 M concentration) is 74%. The adsorbent prepared from tea waste is efficient and it can be conveniently employed as a low-cost alternative in the treatment of wastewater for heavy metal removal.


2018 ◽  
Vol 15 (3) ◽  
pp. 567-575
Author(s):  
K.G. Akpomie ◽  
C.C. Ezeofor ◽  
S.I. Eze ◽  
C.N. Okey ◽  
P.I. Ebiem-Kenechukwu

The biosorption of Cd (II), As (III) and Pb (II) ions from solution utilizing Vigna unguiculata leaf powders (VULP) as a low cost biosorbent was studied. The influence of temperature, metal ion concentration, biosorbent dose, contact time and pH on the sequestration process was examined by batch procedure. Increase in the biosorption of the three metal ions with increased pH and biosorbent dosage was obtained in this study.Equilibrium contact time of 20, 40 and 50min was achieved for Cd(II), As (III) and Pb(II) ions and biosorption was in the order As(III)> Cd(II) >Pb(II). Isotherm analysis was performed by the application of Langmuir, Freundlich, Flory-Huggins and Scatchard models. The Langmuir model gave the best fit with maximum monolayer biosorption capacity of 109.1, 105 and 119.3 mg/g for Cd (II), Pb (II) and As (III) respectively. Scatchard model confirmed a homogenous surface of VULP and monolayer biosorption of metal ions. Pseudo second order model showed the best fit compared to pseudo first order, Elovich and Banghams kinetic models according to kinetic analysis. Thermodynamics study revealed a feasibly, spontaneous exothermic biosorption process. The result showed good potentials of VULP as suitable cheap biosorbent for attenuation of Cd (II), Pb(II) and As (III) ions from polluted wastewaters.


Author(s):  
Renjusha S ◽  
Shyama Nair

Industrial effluents loaded with heavy metals are a cause of hazards to human and other forms of life. Conventional methods such as chemical precipitation, evaporation, electroplating, ion exchange, reverse osmosis etc., used for removal of heavy metals from waste water however, are often cost prohibitive having inadequate efficiencies at low metal ion concentrations. Biosorption can be considered as an alternative technology which has been proved as more efficient and economical for removal of heavy metals from the industrial waste water. In the present study, the adsorption capacity of epicarp of Atrocarpus heterophyllus for the removal of heavy metals, lead and iron were determined by batch adsorption studies. Adsorption of heavy metals were studied till equilibrium was reached. Studies were carried by using different doses of adorbent, varying the conditions of adsorption and contact time. The results obtained shows that, the adsorption of the metal ions is contact time and adsorbent dosage dependent. Adsorption studies obeys both Langmuir isotherm model and Freundlich models. The goal for this work is to develop inexpensive, highly available, effective adsorbents from epicarp of jackfruit as alternative to existing commercial adsorbents.


Sign in / Sign up

Export Citation Format

Share Document