scholarly journals Gravitational Lensing Formalism in a Curved Arc Basis: A Continuous Description of Observables and Degeneracies from the Weak to the Strong Lensing Regime

2021 ◽  
Vol 919 (1) ◽  
pp. 38
Author(s):  
Simon Birrer
Galaxies ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 43 ◽  
Author(s):  
John Moffat ◽  
Sohrab Rahvar ◽  
Viktor Toth

We investigate gravitational lensing in the context of the MOG modified theory of gravity. Using a formulation of the theory with no adjustable or fitted parameters, we present the MOG equations of motion for slow, nonrelativistic test particles and for ultrarelativistic test particles, such as rays of light. We demonstrate how the MOG prediction for the bending of light can be applied to astronomical observations. Our investigation first focuses on a small set of strong lensing observations where the properties of the lensing objects are found to be consistent with the predictions of the theory. We also present an analysis of the colliding clusters 1E0657-558 (known also as the Bullet Cluster) and Abell 520; in both cases, the predictions of the MOG theory are in good agreement with observation.


2020 ◽  
Vol 496 (3) ◽  
pp. 2591-2604 ◽  
Author(s):  
Taizo Okabe ◽  
Masamune Oguri ◽  
Sébastien Peirani ◽  
Yasushi Suto ◽  
Yohan Dubois ◽  
...  

ABSTRACT We study shapes and alignments of 45 dark matter (DM) haloes and their brightest cluster galaxies (BCGs) using a sample of 39 massive clusters from Hubble Frontier Field (HFF), Cluster Lensing And Supernova survey with Hubble (CLASH), and Reionization Lensing Cluster Survey (RELICS). We measure shapes of the DM haloes by strong gravitational lensing, whereas BCG shapes are derived from their light profiles in Hubble Space Telescope images. Our measurements from a large sample of massive clusters presented here provide new constraints on DM and cluster astrophysics. We find that DM haloes are on average highly elongated with the mean ellipticity of 0.482 ± 0.028, and position angles of major axes of DM haloes and their BCGs tend to be aligned well with the mean value of alignment angles of 22.2 ± 3.9 deg. We find that DM haloes in our sample are on average more elongated than their BCGs with the mean difference of their ellipticities of 0.11 ± 0.03. In contrast, the Horizon-AGN cosmological hydrodynamical simulation predicts on average similar ellipticities between DM haloes and their central galaxies. While such a difference between the observations and the simulation may well be explained by the difference of their halo mass scales, other possibilities include the bias inherent to strong lensing measurements, limited knowledge of baryon physics, or a limitation of cold DM.


2013 ◽  
Vol 28 (14) ◽  
pp. 1350057 ◽  
Author(s):  
NANNAN WANG ◽  
LIXIN XU

In this paper, we propose a new method to use the strong lensing data sets to constrain a cosmological model. By taking the ratio [Formula: see text] as cosmic observations, one can completely eliminate the uncertainty caused by the relation σSIS= fEσ0which characterizes the relation between the stellar velocity dispersion σ0and the velocity dispersion σSIS. Via our method, a relative tight constraint to the cosmological model space can be obtained, for the spatially flat ΛCDM model as an example [Formula: see text] in 3σ regions. And by using this method, one can also probe the nature of dark energy and the spatial curvature of our Universe.


2020 ◽  
Vol 644 ◽  
pp. A108
Author(s):  
Lyne Van de Vyvere ◽  
Dominique Sluse ◽  
Sampath Mukherjee ◽  
Dandan Xu ◽  
Simon Birrer

Strong gravitational lensing is a powerful tool to measure cosmological parameters and to study galaxy evolution mechanisms. However, quantitative strong lensing studies often require mock observations. To capture the full complexity of galaxies, the lensing galaxy is often drawn from high resolution, dark matter only or hydro-dynamical simulations. These have their own limitations, but the way we use them to emulate mock lensed systems may also introduce significant artefacts. In this work we identify and explore the specific impact of mass truncation on simulations of strong lenses by applying different truncation schemes to a fiducial density profile with conformal isodensity contours. Our main finding is that improper mass truncation can introduce undesired artificial shear. The amplitude of the spurious shear depends on the shape and size of the truncation area as well as on the slope and ellipticity of the lens density profile. Due to this effect, the value of H0 or the shear amplitude inferred by modelling those systems may be biased by several percents. However, we show that the effect becomes negligible provided that the lens projected map extends over at least 50 times the Einstein radius.


2007 ◽  
Vol 3 (S244) ◽  
pp. 206-215 ◽  
Author(s):  
Ignacio Ferreras ◽  
Prasenjit Saha ◽  
Liliya L. R. Williams ◽  
Scott Burles

AbstractWe present the distribution of luminous and dark matter in a set of strong lensing (early-type) galaxies. By combining two independent techniques – stellar population synthesis and gravitational lensing – we can compare the baryonic and dark matter content in these galaxies within the regions that can be probed using the images of the lensed background source. Two samples were studied, extracted from the CASTLES and SLACS surveys. The former probes a wider range of redshifts and allows us to explore the mass distribution out to ~ 5Re. The high resolution optical images of the latter (using HST/ACS) are used to show a pixellated map of the ratio between total and baryonic matter. We find dark matter to be absent in the cores of these galaxies, with an increasing contribution at projected radii R ≳ Re. The slopes are roughly compatible with an isothermal slope (better interpreted as an adiabatically contracted NFW profile), but a large scatter in the slope exists among galaxies. There is a trend suggesting most massive galaxies have a higher content of dark matter in the regions probed by this analysis.


2019 ◽  
Vol 492 (1) ◽  
pp. 1127-1134 ◽  
Author(s):  
Ashish Kumar Meena ◽  
Jasjeet Singh Bagla

ABSTRACT We discuss the gravitational lensing of gravitational wave (GW) signals from coalescing binaries. We delineate the regime where wave effects are significant from the regime where geometric limit can be used. Further, we focus on the effect of microlensing and the combined effect of strong lensing and microlensing. We find that microlensing combined with strong lensing can introduce time varying phase shift in the signal and hence can lead to detectable differences in the signal observed for different images produced by strong lensing. This, coupled with the coarse localization of signal source in the sky for GW detections, can make it difficult to identify the common origin of signal corresponding to different images and use observables like time delay. In case we can reliably identify corresponding images, microlensing of individual images can be used as a tool to constrain properties of microlenses. Sources of gravitational waves can undergo microlensing due to lenses in the disc/halo of the Galaxy, or due to lenses in an intervening galaxy even in absence of strong lensing. In general the probability for this is small with one exception: extragalactic sources of GWs that lie in the galactic plane are highly likely to be microlensed. Wave effects are extremely important for such cases. In case of detections of such sources with low signal-to-noise ratio, the uncertainty of occurrence of microlensing or otherwise introduces an additional uncertainty in the parameters of the source.


Science ◽  
2020 ◽  
Vol 369 (6509) ◽  
pp. 1347-1351 ◽  
Author(s):  
Massimo Meneghetti ◽  
Guido Davoli ◽  
Pietro Bergamini ◽  
Piero Rosati ◽  
Priyamvada Natarajan ◽  
...  

Cold dark matter (CDM) constitutes most of the matter in the Universe. The interplay between dark and luminous matter in dense cosmic environments, such as galaxy clusters, is studied theoretically using cosmological simulations. Observations of gravitational lensing are used to characterize the properties of substructures—the small-scale distribution of dark matter—in clusters. We derive a metric, the probability of strong lensing events produced by dark-matter substructure, and compute it for 11 galaxy clusters. The observed cluster substructures are more efficient lenses than predicted by CDM simulations, by more than an order of magnitude. We suggest that systematic issues with simulations or incorrect assumptions about the properties of dark matter could explain our results.


Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 19
Author(s):  
Giulia Cusin ◽  
Ruth Durrer ◽  
Irina Dvorkin

In this paper, we studied the gravitational lensing of gravitational wave events. The probability that an observed gravitational wave source has been (de-)amplified by a given amount is a detector-dependent quantity which depends on different ingredients: the lens distribution, the underlying distribution of sources and the detector sensitivity. The main objective of the present work was to introduce a semi-analytic approach to study the distribution of the magnification of a given source population observed with a given detector. The advantage of this approach is that each ingredient can be individually varied and tested. We computed the expected magnification as both a function of redshift and of the observedsource luminosity distance, which is the only quantity one can access via observation in the absence of an electromagnetic counterpart. As a case study, we then focus on the LIGO/Virgo network and on strong lensing (μ>1).


2020 ◽  
Vol 496 (1) ◽  
pp. 381-393 ◽  
Author(s):  
Marco Chianese ◽  
Adam Coogan ◽  
Paul Hofma ◽  
Sydney Otten ◽  
Christoph Weniger

ABSTRACT Since upcoming telescopes will observe thousands of strong lensing systems, creating fully automated analysis pipelines for these images becomes increasingly important. In this work, we make a step towards that direction by developing the first end-to-end differentiable strong lensing pipeline. Our approach leverages and combines three important computer science developments: (i) convolutional neural networks (CNNs), (ii) efficient gradient-based sampling techniques, and (iii) deep probabilistic programming languages. The latter automatize parameter inference and enable the combination of generative deep neural networks and physics components in a single model. In the current work, we demonstrate that it is possible to combine a CNN trained on galaxy images as a source model with a fully differentiable and exact implementation of gravitational lensing physics in a single probabilistic model. This does away with hyperparameter tuning for the source model, enables the simultaneous optimization of nearly 100 source and lens parameters with gradient-based methods, and allows the use of efficient gradient-based posterior sampling techniques. These features make this automated inference pipeline potentially suitable for processing a large amount of data. By analysing mock lensing systems with different signal-to-noise ratios, we show that lensing parameters are reconstructed with per cent-level accuracy. More generally, we consider this work as one of the first steps in establishing differentiable probabilistic programming techniques in the particle astrophysics community, which have the potential to significantly accelerate and improve many complex data analysis tasks.


1996 ◽  
Vol 13 (3) ◽  
pp. 236-242 ◽  
Author(s):  
Mark A. Walker

AbstractGravitational lensing can significantly magnify the images of astrophysical sources, but only if the source lies within the Einstein ring of the lens. In consequence the chance of any Galactic star magnifying a more distant source is extremely small—much less than one in a million. However, the extra light travel time (‘Shapiro delay’) introduced by the presence of a lens can be large even when there is negligible effect on the image magnification, and as the relative positions of source and lens change so does the delay. In this paper we quantify these changes and the corresponding influence on apparent timing properties of pulsars. While the total Shapiro delay can be large, it is the temporal variations in this quantity which are measurable with pulsar timing. We find that the magnitude of the expected delay variations is too small to be detectable except during strong lensing events, which are extremely rare. Even in the case of a high-velocity pulsar in the Galactic Plane, the stochastic Shapiro delay is typically expected not to have a substantial influence on the timing properties. In consequence the viability of a pulsar-based time standard is not adversely affected by gravitational lensing.


Sign in / Sign up

Export Citation Format

Share Document