scholarly journals Supersonic Expansion of the Bipolar H ii Region Sh2-106: A 3500 Year Old Explosion?

2022 ◽  
Vol 924 (2) ◽  
pp. 50
Author(s):  
John Bally ◽  
Zen Chia ◽  
Adam Ginsburg ◽  
Bo Reipurth ◽  
Kei E. I Tanaka ◽  
...  

Abstract Multi-epoch narrowband Hubble Space Telescope images of the bipolar H ii region Sh2-106 reveal highly supersonic nebular proper motions that increase with projected distance from the massive young stellar object S106 IR, reaching over ∼30 mas yr−1 (∼150 km s−1 at D = 1.09 kpc) at a projected separation of ∼1.′4 (0.44 pc) from S106 IR. We propose that S106 IR experienced a ∼1047 erg explosion ∼3500 yr ago. The explosion may be the result of a major accretion burst or a recent encounter with another star, or a consequence of the interaction of a companion with the bloated photosphere of S106 IR as it grew from ∼10 through ∼15 M ⊙ at a high accretion rate. Near-IR images reveal fingers of H2 emission pointing away from S106 IR and an asymmetric photon-dominated region surrounding the ionized nebula. Radio continuum and Brγ emission reveal a C-shaped bend in the plasma, indicating either the motion of S106 IR toward the east, or the deflection of plasma toward the west by the surrounding cloud. The H ii region bends around a ∼1′ diameter dark bay west of S106 IR that may be shielded from direct illumination by a dense molecular clump. Herbig–Haro and Molecular Hydrogen Objects tracing outflows powered by stars in the Sh2-106 protocluster such as the Class 0 source S106 FIR are discussed.

1987 ◽  
Vol 115 ◽  
pp. 141-142
Author(s):  
M. Felli ◽  
M. Massi ◽  
R. Stanga ◽  
E. Churchwell

A VLA radio continuum study of the H II region M17 (Felli, Churchwell and Massi, 1984) has shown the presence of an elongated sharp arc structure in the South Bar of the nebula, in a region of heavy obscuration. The arc has been interpreted as an ionization boundary, viewed edge on, located between the diffuse H II region, to the east, and a dense component of the extended molecular cloud, to the west. About 3″ to the west of this arc, an ultra-compact H II region has been found. This has a shell type structure, a linear diameter of 0.004 pc and probably is the result of induced star formation in the molecular cloud produced by the pressure front preceding the ionization front.


2020 ◽  
Vol 500 (3) ◽  
pp. 3213-3239
Author(s):  
Mattia Libralato ◽  
Daniel J Lennon ◽  
Andrea Bellini ◽  
Roeland van der Marel ◽  
Simon J Clark ◽  
...  

ABSTRACT The presence of massive stars (MSs) in the region close to the Galactic Centre (GC) poses several questions about their origin. The harsh environment of the GC favours specific formation scenarios, each of which should imprint characteristic kinematic features on the MSs. We present a 2D kinematic analysis of MSs in a GC region surrounding Sgr A* based on high-precision proper motions obtained with the Hubble Space Telescope. Thanks to a careful data reduction, well-measured bright stars in our proper-motion catalogues have errors better than 0.5 mas yr−1. We discuss the absolute motion of the MSs in the field and their motion relative to Sgr A*, the Arches, and the Quintuplet. For the majority of the MSs, we rule out any distance further than 3–4 kpc from Sgr A* using only kinematic arguments. If their membership to the GC is confirmed, most of the isolated MSs are likely not associated with either the Arches or Quintuplet clusters or Sgr A*. Only a few MSs have proper motions, suggesting that they are likely members of the Arches cluster, in agreement with previous spectroscopic results. Line-of-sight radial velocities and distances are required to shed further light on the origin of most of these massive objects. We also present an analysis of other fast-moving objects in the GC region, finding no clear excess of high-velocity escaping stars. We make our astro-photometric catalogues publicly available.


2007 ◽  
Vol 3 (S248) ◽  
pp. 244-247 ◽  
Author(s):  
S. Piatek ◽  
C. Pryor

AbstractOver the past several years, our research group has been measuring proper motions for nearby dwarf satellite galaxies using data taken with the Hubble Space Telescope. In order to measure proper motions with an expected size of several tens of milliarcseconds per century using a time baseline of 2-4 years, our work required that positions of stars and QSOs be measured to an accuracy of ~0.25 mas (~0.005 pixel). This contribution reviews the scientific justification of this work and our methodology. It concludes with a few general results and future directions.


2020 ◽  
Vol 492 (4) ◽  
pp. 5966-5979 ◽  
Author(s):  
Yoshiaki Sofue

ABSTRACT Molecular line and radio continuum properties of the elephant trunks (ET, Pillars of Creation) in M16 are investigated by analysing 12CO(J = 1−0) , 13CO(J = 1−0) and C18O(J = 1−0) line survey data from the Nobeyama 45-m telescope and the Galactic plane radio survey at 20 and 90 cm with the Very Large Array. The head clump of Pillar West I is found to be the brightest radio source in M16, showing a thermal spectrum and the properties of a compact H ii region, with the nearest O5 star in NGC 6611 being the heating source. The radio pillars have a cometary structure concave to the molecular trunk head, and the surface brightness distribution obeys a simple illumination law from a remote excitation source. The molecular density in the pillar head is estimated to be several 104 H2 cm−3 and the molecular mass is $\sim 13\!-\!40 \, \mathrm{M}_\odot$. CO-line kinematics reveals random rotation of the clumps in the pillar tail at ∼1–2 km s−1, comparable with the velocity dispersion and estimated Alfvén velocity. It is suggested that the random directions of the velocity gradients would manifest as torsional magnetic oscillation of the clumps around the pillar axis.


2003 ◽  
Vol 212 ◽  
pp. 515-522
Author(s):  
Anthony F.J. Moffat ◽  

While NGC 3603 is often quoted as the most massive visible Giant H ii Region in the Galaxy, there are other similar and even more massive regions now being found towards the inner Galaxy in the near-IR. Nevertheless, NGC 3603 still retains the status of clone to the dense core-object in 30 Dor, R 136 — but 7x closer and 49x less crowded! This paper summarizes the most recent findings concerning NGC 3603's color-magnitude diagram (CMD), initial mass function (IMF), mass segregation and stellar content — including its unusually luminous H-rich WNL members — down to its pre-main-sequence stars near the H-burning limit. Of special relevance are new high-resolution X-ray and radio images as related to merging/colliding winds and three massive proplyd-like objects. NGC 3603 is a somewhat younger, hotter, scaled-down version of typical starbursts found in other galaxies.


Author(s):  
Katsuhiro Hayashi ◽  
Satoshi Yoshiike ◽  
Rei Enokiya ◽  
Shinji Fujita ◽  
Rin Yamada ◽  
...  

Abstract We report on a study of the high-mass star formation in the H ii region W 28 A2 by investigating the molecular clouds that extend over ∼5–10 pc from the exciting stars using the 12CO and 13CO (J = 1–0) and 12CO (J = 2–1) data taken by NANTEN2 and Mopra observations. These molecular clouds consist of three velocity components with CO intensity peaks at VLSR ∼ −4 km s−1, 9 km s−1, and 16 km s−1. The highest CO intensity is detected at VLSR ∼ 9 km s−1, where the high-mass stars with spectral types O6.5–B0.5 are embedded. We found bridging features connecting these clouds toward the directions of the exciting sources. Comparisons of the gas distributions with the radio continuum emission and 8 μm infrared emission show spatial coincidence/anti-coincidence, suggesting physical associations between the gas and the exciting sources. The 12CO J = 2–1 to 1–0 intensity ratio shows a high value (≳0.8) toward the exciting sources for the −4 km s−1 and +9 km s−1 clouds, possibly due to heating by the high-mass stars, whereas the intensity ratio at the CO intensity peak (VLSR ∼ 9 km s−1) decreases to ∼0.6, suggesting self absorption by the dense gas in the near side of the +9 km s−1 cloud. We found partly complementary gas distributions between the −4 km s−1 and +9 km s−1 clouds, and the −4 km s−1 and +16 km s−1 clouds. The exciting sources are located toward the overlapping region in the −4 km s−1 and +9 km s−1 clouds. Similar gas properties are found in the Galactic massive star clusters RCW 38 and NGC 6334, where an early stage of cloud collision to trigger the star formation is suggested. Based on these results, we discuss the possibility of the formation of high-mass stars in the W 28 A2 region being triggered by cloud–cloud collision.


2020 ◽  
Vol 495 (3) ◽  
pp. 3494-3514 ◽  
Author(s):  
Zhaohuan Zhu ◽  
Yan-Fei Jiang ◽  
James M Stone

ABSTRACT FU Ori is the prototype of FU Orionis systems that are outbursting protoplanetary discs. Magnetic fields in FU Ori’s accretion discs have previously been detected using spectropolarimetry observations for Zeeman effects. We carry out global radiation ideal MHD simulations to study FU Ori’s inner accretion disc. We find that (1) when the disc is threaded by vertical magnetic fields, most accretion occurs in the magnetically dominated atmosphere at z ∼ R, similar to the ‘surface accretion’ mechanism in previous locally isothermal MHD simulations. (2) A moderate disc wind is launched in the vertical field simulations with a terminal speed of ∼300–500 km s−1 and a mass-loss rate of 1–10 per cent the disc accretion rate, which is consistent with observations. Disc wind fails to be launched in simulations with net toroidal magnetic fields. (3) The disc photosphere at the unit optical depth can be either in the wind launching region or the accreting surface region. Magnetic fields have drastically different directions and magnitudes between these two regions. Our fiducial model agrees with previous optical Zeeman observations regarding both the field directions and magnitudes. On the other hand, simulations indicate that future Zeeman observations at near-IR wavelengths or towards other FU Orionis systems may reveal very different magnetic field structures. (4) Due to energy loss by the disc wind, the disc photosphere temperature is lower than that predicted by the thin disc theory, and the previously inferred disc accretion rate may be lower than the real accretion rate by a factor of ∼2–3.


2001 ◽  
Vol 205 ◽  
pp. 154-161 ◽  
Author(s):  
Roeland P. van der Marel

This review summarizes some aspects of the central kiloparsec scale structure of galaxies, and in particular spiral galaxies, elliptical galaxies and merger remnants. The focus is on results from optical and near-IR imaging and spectroscopy, with emphasis on recent work with the Hubble Space Telescope.


2019 ◽  
Vol 14 (S351) ◽  
pp. 324-328
Author(s):  
Mattia Libralato

AbstractSpectroscopy and photometry have revealed existence, complexity and properties of the multiple stellar populations (mPOPs) hosted in Galactic globular clusters. However, the conundrum of the formation and evolution of mPOPs is far from being completely exploited: the available pieces of information seem not enough to shed light on these topics. Astrometry, and in particular high-precision proper motions, can provide us the sought-after answers about how mPOPs formed and have evolved in these ancient stellar systems. In the following, I present a brief overview of the observational results on the internal kinematics of the mPOPs in some GCs thanks to Hubble Space Telescope high-precision proper motions.


Sign in / Sign up

Export Citation Format

Share Document