scholarly journals Molecular identification of T. brucei s.l. in tsetse flies after long-term permanence in field traps

2009 ◽  
Vol 3 (09) ◽  
pp. 735-738 ◽  
Author(s):  
Joana Gomes ◽  
Celia Leão ◽  
Filipa Ferreira ◽  
Maria Odete Afonso ◽  
Catarina Santos ◽  
...  

Background: Tsetse flies (Glossina spp.) are responsible for the transmission of trypanosomes, agents of animal and Human African Trypanosomiasis (HAT). These diseases are associated with considerable animal and human economical loss, morbidity and mortality. The correct identification of trypanosomes species infecting tsetse flies is crucial for adequate control measures. Identification presently requires technically difficult, cumbersome, and expensive on-site fly dissection. To obviate this difficulty we explored the possibility of correctly identifying trypanosomes in tsetse collected, under field conditions, only for number determination. Methodology: Tsetse flies, that remained exposed for weeks in field traps in the Vista Alegre HAT focus in Angola, were obtained. The flies were not dissected on site and were stored at room temperature for months. DNA extraction using the whole tsetse bodies and PCR analysis were performed in 73 randomly chosen flies. Results: Despite the extensive degradation of the tsetse, DNA extraction was conducted successfully in 62 out of the 73 flies. PCR analysis detected the presence of Trypanosoma brucei s.l DNA in 3.2 % of the tsetse. Conclusions: This approach could be cost-effective and suitable for vector-related HAT control activities in the context of countries where entomological trained personnel is missing and financial resources are limited.

2019 ◽  
Author(s):  
Arnaud Capron ◽  
Don Stewart ◽  
Kelly Hrywkiw ◽  
Kiah Allen ◽  
Nicolas Feau ◽  
...  

AbstractThe increase in global trade is responsible for a surge in foreign invasive species introductions across the world. Early detection and surveillance activities are essential to prevent future invasions. Molecular diagnostics by DNA testing has become an integral part of this process. However, for environmental applications, there is a need for cost-effective and efficient point-of-use DNA testing that would allow for the collection of results in real-time away from laboratory facilities. To achieve this requires the development of simple and fast sample processing and DNA extraction, room-temperature stable reagents and a portable instrument. We conducted a series of tests using a crude buffer-based DNA extraction protocol and lyophilized, pre-made, reactions to address the first two requirements. We chose to demonstrate the use of this approach with organisms that cover a broad spectrum of known undesirable insects and pathogens: the ascomycete Sphaerulina musiva, the oomycete Phytophthora ramorum, the basidiomycetes Cronartium ribicola and Cronartium comandrae and the insect Lymantria dispar. Tests performed from either infected leaf material or spores (pathogens), or legs and antenna (insects). We were able to obtain positive amplification for the targeted species in all the samples tested. The shelf-life of the lyophilized reactions was assessed, confirming the stability of over a year at room temperature. Finally, successful tests conducted with portable thermocyclers and disposable plastics, demonstrating the suitability of the method, named in Situ Processing and Efficient Environment Detection (iSPEED), for field testing. This kit is ideally adapted to field testing as it fits in a backpack and can be carried to remote locations.


2020 ◽  
Author(s):  
Ramesh Masthi ◽  
Afraz Jahan ◽  
Divya Bharathi ◽  
Pradam Abhilash ◽  
Vinayak Kaniyarakkal ◽  
...  

BACKGROUND The SARS-Cov-2 infection has rapidly saturated health systems and traditional surveillance networks are finding hard to keep pace with its spread. We designed a participatory disease surveillance (PDS) system, to capture symptoms of Influenza-like illness (ILI) to estimate SARS-CoV-2 infection in the community. OBJECTIVE While data generated by these platforms can help public health organisations find community hotspots and effectively direct control measures, it has never been compared to traditional systems. METHODS A completely anonymised web based PDS system, www.trackcovid-19.org was developed. We evaluated the symptomatic responses received form the PDS system to the traditional risk based surveillance carried out by the Bruhat Bengaluru Mahanagara Palike over a period of 45 days in the South Indian city of Bengaluru RESULTS The PDS system recorded 11062 entries from 106 Postal codes. A healthy response was obtained from 10863 users while 199 (1.8%) reported symptomatic. Subgroup analysis of a 14 day symptomatic window recorded 33 (0.29%) responses. Risk based surveillance was carried out covering a population of 605,284 with 209 (0.03%) individuals identified symptomatic. CONCLUSIONS Web PDS platforms provide better visualisation of community infection when compared to traditional risk based surveillance systems. They are extremely useful by providing real time information in the extended battle against this pandemic. When integrated into national disease surveillance systems, they can provide long term community surveillance adding an important cost-effective layer to already available data sources.


Sensor Review ◽  
2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Thejas Ramakrishnaiah ◽  
Prasanna Gunderi Dhananjaya ◽  
Chaturmukha Vakwadi Sainagesh ◽  
Sathish Reddy ◽  
Swaroop Kumaraswamy ◽  
...  

Purpose This paper aims to study the various developments taking place in the field of gas sensors made from polyaniline (PANI) nanocomposites, which leads to the development of high-performance electrical and gas sensing materials operating at room temperature. Design/methodology/approach PANI/ferrite nanocomposites exhibit good electrical properties with lower dielectric losses. There are numerous reports on PANI and ferrite nanomaterial-based gas sensors which have good sensing response, feasible to operate at room temperature, requires less power and cost-effective. Findings This paper provides an overview of electrical and gas sensing properties of PANI/ferrite nanocomposites having improved selectivity, long-term stability and other sensing performance of sensors at room temperature. Originality/value The main purpose of this review paper is to focus on PANI/ferrite nanocomposite-based gas sensors operating at room temperature.


Author(s):  
Supriya Ambawat ◽  
Subaran Singh ◽  
C. Tara Satyavathi ◽  
Rajbala Meena ◽  
R. C. Meena ◽  
...  

Extraction of good quality genomic deoxyribonucleic acid (DNA) from plants is a major prerequisite for molecular biology experiments. An efficient genomic DNA protocol must be simple, fast and cost effective with high yield and purity. Presence of polyphenols, polysaccharides and secondary metabolites in some plants hamper with DNA extraction making it a very laborious, difficult and time consuming procedure. Here, we portrayed a modified protocol based on the cetyl trimethyl ammonium bromide (CTAB) method to isolate DNA from climate resilient pearl millet leaf tissues having higher amount of polysaccharides. It also excludes the use of expensive chemicals and equipments like proteinase K, liquid nitrogen and tissue lyser. This method includes extraction of DNA using a buffer (pH 8.0) containing 200 mM Tris-HCl, 20 mM ethylenediamine tetracetic acid (EDTA),1.4 M NaCl, 2% CTAB, 2% sodium dodecyl sulphate (SDS) and 1.0 % β-mercaptoethanol followed by purification of DNA with phenol, chloroform, isoamyl alcohol and finally precipitation of DNA by sodium acetate and isopropanol. Good quality genomic DNA with sharp and clear bands was obtained from 48 pearl millet genotypes using this protocol. The yield of DNA varied from 105.2 to 328.3 ng/μl. The purity of DNA sample ranged from 1.74 to 1.95 based on the absorbance at A260/A280 ratio indicating that it’s free from ribonucleic acid (RNA) and protein contamination. PCR analysis using simple sequence repeat (SSR) primers exhibited consistent and reliable amplification products ranging from 150 to 650 bp.This study reveals a fast, simple, efficient, specific, reproducible, reliable and cost effective method for extraction of DNA from small to large number of plant samples amenable to PCR amplification and could be stored for longer duration.


Biosensors ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 375
Author(s):  
Youngung Seok ◽  
Joonseok Lee ◽  
Min-Gon Kim

The critical risk from airborne infectious diseases, bio-weapons, and harmful bacteria is currently the highest it has ever been in human history. The requirement for monitoring airborne pathogens has gradually increased to defend against bioterrorism or prevent pandemics, especially via simple and low-cost platforms which can be applied in resource-limited settings. Here, we developed a paper-based airborne bacteria collection and DNA extraction kit suitable for simple application with minimal instruments. Airborne sample collection and DNA extraction for PCR analysis were integrated in the paper kit. We created an easy-to-use paper-based air monitoring system using 3D printing technology combined with an air pump. The operation time of the entire process, comprising air sampling, bacterial cell lysis, purification and concentration of DNA, and elution of the DNA analyte, was within 20 min. All the investigations and optimum settings were tested in a custom-designed closed cabinet system. In the fabricated cabinet system, the paper kit operated effectively at a temperature of 25–35 °C and 30–70% relative humidity for air containing 10–106 CFU Staphylococcus aureus. This paper kit could be applied for simple, rapid, and cost-effective airborne pathogen monitoring.


2015 ◽  
Vol 20 (4) ◽  
pp. 242-251 ◽  
Author(s):  
Éva Kállay

Abstract. The last several decades have witnessed a substantial increase in the number of individuals suffering from both diagnosable and subsyndromal mental health problems. Consequently, the development of cost-effective treatment methods, accessible to large populations suffering from different forms of mental health problems, became imperative. A very promising intervention is the method of expressive writing (EW), which may be used in both clinically diagnosable cases and subthreshold symptomatology. This method, in which people express their feelings and thoughts related to stressful situations in writing, has been found to improve participants’ long-term psychological, physiological, behavioral, and social functioning. Based on a thorough analysis and synthesis of the published literature (also including most recent meta-analyses), the present paper presents the expressive writing method, its short- and long-term, intra-and interpersonal effects, different situations and conditions in which it has been proven to be effective, the most important mechanisms implied in the process of recovery, advantages, disadvantages, and possible pitfalls of the method, as well as variants of the original technique and future research directions.


1977 ◽  
Vol 16 (01) ◽  
pp. 30-35 ◽  
Author(s):  
N. Agha ◽  
R. B. R. Persson

SummaryGelchromatography column scanning has been used to study the fractions of 99mTc-pertechnetate, 99mTcchelate and reduced hydrolyzed 99mTc in preparations of 99mTc-EDTA(Sn) and 99mTc-DTPA(Sn). The labelling yield of 99mTc-EDTA(Sn) chelate was as high as 90—95% when 100 μmol EDTA · H4 and 0.5 (Amol SnCl2 was incubated with 10 ml 99mTceluate for 30—60 min at room temperature. The study of the influence of the pH-value on the fraction of 99mTc-EDTA shows that pH 2.8—2.9 gave the best labelling yield. In a comparative study of the labelling kinetics of 99mTc-EDTA(Sn) and 99mTc- DTPA(Sn) at different temperatures (7, 22 and 37°C), no significant influence on the reduction step was found. The rate constant for complex formation, however, increased more rapidly with increased temperature for 99mTc-DTPA(Sn). At room temperature only a few minutes was required to achieve a high labelling yield with 99mTc-DTPA(Sn) whereas about 60 min was required for 99mTc-EDTA(Sn). Comparative biokinetic studies in rabbits showed that the maximum activity in kidneys is achieved after 12 min with 99mTc-EDTA(Sn) but already after 6 min with 99mTc-DTPA(Sn). The long-term disappearance of 99mTc-DTPA(Sn) from the kidneys is about five times faster than that for 99mTc-EDTA(Sn).


1997 ◽  
Vol 17 (03) ◽  
pp. 161-162
Author(s):  
Thomas Hyers

SummaryProblems with unfractionated heparin as an antithrombotic have led to the development of new therapeutic agents. Of these, low molecular weight heparin shows great promise and has led to out-patient therapy of DVT/PE in selected patients. Oral anticoagulants remain the choice for long-term therapy. More cost-effective ways to give oral anticoagulants are needed.


Author(s):  
W.J. Parker ◽  
N.M. Shadbolt ◽  
D.I. Gray

Three levels of planning can be distinguished in grassland farming: strategic, tactical and operational. The purpose of strategic planning is to achieve a sustainable long-term fit of the farm business with its physical, social and financial environment. In pastoral farming, this essentially means developing plans that maximise and best match pasture growth with animal demand, while generating sufficient income to maintain or enhance farm resources and improvements, and attain personal and financial goals. Strategic plans relate to the whole farm business and are focused on the means to achieve future needs. They should be routinely (at least annually) reviewed and monitored for effectiveness through key performance indicators (e.g., Economic Farm Surplus) that enable progress toward goals to be measured in a timely and cost-effective manner. Failure to link strategy with control is likely to result in unfulfilled plans. Keywords: management, performance


2017 ◽  
Author(s):  
Douglas LaBrecque ◽  
◽  
Russell D. Brigham ◽  
Conny Schmidt-Hattenburger ◽  
Evan Um ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document