scholarly journals Effect of light intensity and nutrient concentration on growth and pigments of the green microalga Tetraselmis suecica

2021 ◽  
Vol 49 (3) ◽  
pp. 431-441
Author(s):  
Omar Montes-González ◽  
Adriana González-Silvera ◽  
Enrique Valenzuela-Espinoza ◽  
Eduardo Santamaría-del-Ángel ◽  
Jorge López-Calderón

Tetraselmis suecica is a green microalga that thrives under a wide range of conditions, used in the commercial culture of fish, mollusk, and crustacean larvae for supplementing the demand for fertilizers. Its pigments have applications in human health care as drug products, vitamins, and cosmetics. Growth and pigment concentration of T. suecica were evaluated in experimental cultures with different nutrient concentrations and light intensities to determine the most appropriate culture conditions to optimize the production of biomass and pigments. Chlorophyll-a, chlorophyll-b, lutein, violaxanthin, α, β-carotene, and neoxanthin concentrations were evaluated under three different nutrient conditions (441.5/18.1, 883/36.3, and 1766/76.2 μM of NaNO3/NaH2PO4) and four light intensities (50, 150, 300, and 750 μmol quanta m-2 s-1). Increases in either or both of these factors lead to increases in the concentration of all pigments. Chlorophyll-a reached up to 5×103 mg m-3, chlorophyll-b up to 2500 mg m-3, lutein 600 mg m-3, violaxanthin 300 mg m-3, α, β-carotene 500 mg m-3, and neoxanthin 400 mg m-3. Growth rate (μ) attained values of 1.6 d-1. An index to evaluate the efficiency of pigment production by light intensity (called LER) was computed. The highest LER was recorded at 50 μmol quanta m-2 s-1 and a nutrient concentration of 1766/76.2 μM (NaNO3/NaH2PO4); this treatment optimizes pigment production with the lowest light intensity. Our results show that the optimum light intensity should be selected according to the objective of the culture, either maximizing pigment concentration for harvesting at higher concentrations or reducing production costs regarding light consumption.

Author(s):  
Leyla USLU

In the study, Porphyridium cruentum was cultured under laboratory conditions at 20±2°C, 16:8 (light:dark) photoperiod and continuous aeration to different salinity (20‰, 30‰, 40‰) and two different light intensities (37 µmol m-2s-1 photon and 110 µmol m-2s-1 photon) and growth was determined. Dry matter, optical density and chlorophyll a parameter were used to determine growth. The best growth was determined in culture with a salinity of 30‰ at 110 µmol m-2s-1 photon light intensity. In this group, the optical density (OD) was 1.504±0.003 and the dry matter amount was 1.327gl-1. In the case of 37µmol µmol m-2s-1 photon light intensity, the optical density values were found to be similar in groups with 30‰ and 50‰ salinity and were found to be 1.234±0.004 and 1.215±0.002, respectively. The amounts of dry matter were also similar; 1.168gl-1 and 1.159gl-1, respectively. While the lowest growth was in the culture at 37 µmol m-2s-1 photon light intensity and 20‰ salinity. The optical density obtained on the last day of this group was 1.165±0.004 and the dry matter amount was determined as 0.986gl-1. The amount of chlorophyll a was determined in the cultured groups at the best 37 µmol m-2s-1 photon light intensity.


1979 ◽  
Vol 34 (7-8) ◽  
pp. 582-587
Author(s):  
Framçoise Techy ◽  
Monique Dinant ◽  
Jacques Aghion

Abstract The spectroscopic (visible) properties of pigment-bearing lipid and protein particles extract­ ed from milk show that: 1) chlorophylls a and b bound to separate particles can form aggregates provided their relative concentration is high enough. Neither pheophytin a nor β-carotene, in the same conditions, form observable aggregates. 2) Chlorophylls a and b can co-aggregate when they are bound to the same particles. Pheophytin a as well as β-carotene seem to prevent the aggregation of chlorophyll a. β-carotene has no effect on the aggregation of chlorophyll b.


1984 ◽  
Vol 64 (1) ◽  
pp. 229-232 ◽  
Author(s):  
WILLIAM A. COURT ◽  
JOHN G. HENDEL

Neoxanthin, violaxanthin, lutein, β-carotene, chlorophyll a and chlorophyll b in the leaves of flue-cured tobacco (Nicotiana tabacum L.) were determined in samples collected at intervals from the middle of July through harvest. Harvested leaves were also sampled at intervals during flue curing for pigment determinations. Except where interrupted by rainfall or irrigation, pigment concentrations progressively declined during plant growth; this degradation was accelerated during flue curing. Carotenoid degradation during flue curing was proportional to the degree of oxygen substitution of the carotenoid. Chlorophyll a and chlorophyll b in cured tissue were typically less than 1% of the amounts present at harvest.Key words: Carotenoids, chlorophyll, tobacco (flue-cured), flue curing, senescence


1995 ◽  
Vol 27 (2) ◽  
pp. 155-160
Author(s):  
M. A. Sanchez-Hoyos ◽  
E. Manrique

AbstractThalli of Ramalina capitata were sprayed with deionized water, 10 mM solutions of KNO3 or NH4Cl, or maintained without any water supply, for 10 days under controlled conditions. The lichens without a water supply showed an increase n antheraxanthin, lutein and β-carotene. The samples treated with deionized water showed a significant increase in violaxathin, antheraxanthin and β-carotene. The lack of a significant difference in zeaxanthin could indicate the absence of de-epoxidation of violaxanthin to zeaxanthin via antheraxanthin. Those samples treated with nitrate solution showed a significant increase in all pigments except for antheraxanthin. In contrast, ammonium treatment did not induce changes compared to water alone, except that antheraxanthin decreased. The lichens treated with nitrate exhibited a significant increase in both chlorophyll a and chlorophyll b, but ammonium affected only chlorophyll b.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 583b-583 ◽  
Author(s):  
Trinidad Reyes ◽  
Terril A. Nell ◽  
Charles A. Conover ◽  
James E. Barrett

Effects of three light intensities (564, 306 and 162 μmol m-2 s-1) and three fertilizer rates (220, 440 and 880 mg/15 cm pot, weekly) were evaluated on acclimatization potential of Chamaedorea elegans. Treatments were applied during four months under greenhouse conditions after which plants were placed indoors (20 μmol m-2 s-1, 21±2C and 50% RH) for two months. Light compensation point (LCP) was significantly reduced by decreasing light intensity and increasing fertilizer rates. Leaf and root fresh and dry weights increased with irradiance while shoots were not affected. Chlorophyll a levels were higher in plants grown under the lowest light intensity. Carbohydrate content is being analyzed and anatomical examination of leaves studied. Plant performance indoors will be discussed. These studies demonstrate that Chamaedorea, a monocot, acclimatizes similarly to dicots.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 648g-648
Author(s):  
Margaret J. McMahon ◽  
John W. Kelly

`Spears' chrysanthemums were grown in chambers fitted with double-walled exolite filled with spectral filtering solutions: a blue textile dye that absorbed red light, CuSO4·5H2O that absorbed far-red light, and H2O that was spectrally non-selective (control). Leaves of `Spears' grown under CuSO4-filters had increased chlorophyll a (23%), chlorophyll b (26%), xanthophyll (22%), and β-carotene (24%) compared to plants grown under H2O or blue-dye filters. Ratios of total carotenoid: chlorophyll and chlorophyll a: chlorophyll b were not affected by filter. Individual leaf area was reduced 25% under CuSO4 filters compared to other filters. Stomates per unit area were not affected by filters, however stomates per leaf were reduced 25% under CuSO4 filters because of leaf size reduction. Stomate length and width were not affected by filter. Leaves from plants grown under CuSO4-filters had an internal structure resembling that of sun-type leaves. Other filters induced a shade-type leaf.


2017 ◽  
Vol 16 (1) ◽  
pp. 15
Author(s):  
Muhammad Fakhri ◽  
Nasrullah Bai Arifin ◽  
Anik Martina Hariati ◽  
Ating Yuniarti

<p class="Pa3"><strong>ABSTRACT </strong></p><p> </p><p class="Pa5"><em>Nannochloropsis </em>sp. has been identified as sources of live feed and pigment in aquaculture. To increase the production, the optimal environmental conditions for microalgae are required. Light intensity is one of the important factors that significantly affects the biomass and pigment of microalgae. The study aimed to determine the effect of light intensity (1,500; 3,000; and 4,500 lux) on growth, biomass production, chlorophyll-a, and carotenoid content of <em>Nannochloropsis </em>sp. strain BJ17. The results showed that different light intensities significantly affected the growth, biomass, chlorophyll-a and carotenoid contents of <em>Nannochloropsis </em>sp. strain BJ17. Increasing light intensity resulted in the increase of the growth rate, biomass, chlorophyll-a, and carotenoid contents of <em>Nannochloropsis </em>sp. strain BJ17. The cell achieved the highest specific growth rate of 1.729 %/day and the cell concentration of 43.333×106 cell/mL at a light intensity of 4,500 lux. The highest chlorophyll-a and carotenoid concentrations of algae were obtained at 4,500 lux (8.304 μg/mL and 3.892 μg/mL, respectively). This study suggested that increasing light intensity led to the increase in the growth, biomass, chlorophyll-a, and carotenoid content of <em>Nannochloropsis </em>sp. strain BJ17.</p><p> </p><p class="Pa5">Keywords: carotenoid, chlorophyll, biomass, growth rate, light intensity</p><p> </p><p> </p><p class="Pa3"><strong>ABSTRAK </strong></p><p> </p><p class="Pa5"><em>Nannochloropsis </em>sp. diketahui sebagai sumber pakan alami dan pigmen pada budidaya perikanan. Budidaya pada kondisi lingkungan yang optimal diperlukan untuk meningkatkan produksi mikroalga. Intensitas cahaya merupakan salah satu faktor esensial yang secara signifikan mempengaruhi biomassa dan pigmen mikroalga. Tujuan penelitian ini adalah untuk menentukan pengaruh intensitas cahaya yang berbeda (1.500, 3.000, and 4.500 lux) terhadap pertumbuhan, produksi biomassa, klorofil-a, dan karotenoid <em>Nannochloropsis </em>sp. strain BJ17. Hasil menunjukkan bahwa intensitas cahaya yang berbeda berpengaruh secara signifikan terhadap pertumbuhan, biomassa dan klorofil-a dan karotenoid <em>Nannochloropsis </em>sp. strain BJ17. Semakin tinggi intensitas cahaya maka laju pertumbuhan, biomassa, kandungan klorofil-a dan total karotenoid <em>Nannochloropsis </em>sp. strain BJ17 semakin tinggi. Laju pertumbuhan spesifik tertinggi 1,729%/hari dan konsentrasi sel maksimum tertinggi 43,333×106 sel/mL dihasilkan pada intensitas cahaya 4.500 lux. Konsentrasi klorofil-a (8,304 μg/mL) dan karotenoid (3,892 μg/mL) tertinggi juga diperoleh pada intensitas cahaya 4.500 lux. Studi ini menunjukkan bahwa peningkatan intensitas cahaya berperan dalam meningkatkan pertumbuhan, produksi biomassa, klorofil-a, dan karotenoid <em>Nannochloropsis </em>sp. strain BJ17.</p><p> </p><p>Kata kunci: karotenoid, klorofil, biomassa, pertumbuhan, intensitas cahaya</p>


Agrotek ◽  
2018 ◽  
Vol 2 (4) ◽  
Author(s):  
Syukur Karamang

This research was aimed at understanding the corn plant using plastic covers. The above mentioned plant was grown in plastic covers that have colours (transparent, red, green, and blue) and without plastic covers. This research was carried out in the Faculty of Agriculture, IPB from the month of May to June 2008. It was implemented using the Completely Randomized Design with three repetitions. The results of the research show that light intensity was higher in the plant that was not enclosed in the plastic covers. Generally, the research shows that the corn plant that was in the plastic covers is better than that one without plastic covers. The use of a plastic cover helps increases the height of the corn plant and the leaves. Chlorophyll a and Chlorophyll b are higher in the corn plant that was not in the plastic covers. The results of the research also indicate that transparent and red plastic covers have better responses compared to plastic covers with blue and green colors.


1988 ◽  
Vol 107 (3) ◽  
pp. 907-919 ◽  
Author(s):  
K D Allen ◽  
M E Duysen ◽  
L A Staehelin

Biogenesis of thylakoid membranes in the conditional chlorophyll b-deficient CD3 mutant of wheat is dramatically altered by relatively small differences in the light intensity under which seedlings are grown. When the CD3 mutant is grown at 400 microE/m2 S (high light, about one-fifth full sunlight) plants are deficient in chlorophyll b (chlorophyll a/b ratio greater than 6.0) and lack or contain greatly reduced amounts of the chlorophyll a/b-binding complexes CPII/CPII (mobile or peripheral LHCII), CP29, CP24 and LHCI, as shown by mildly denaturing 'green gel' electrophoresis, by fully denaturing SDS-PAGE, and by Western blot analysis. High light CD3 chloroplasts display an unusual morphology characterized by large, sheet-like stromal thylakoids formed into parallel unstacked arrays and a limited number of small grana stacks displaced toward the edges of the arrays. Changes in the supramolecular organization of CD3 thylakoids, seen with freeze-fracture electron microscopy, include a reduction in the size of EFs particles, which correspond to photosystem II centers with variable amounts of attached LHCII, and a redistribution of EF particles from the stacked to the unstacked regions. When CD3 seedlings are grown at 150 microE/m2 S (low light) there is a substantial reversal of all of these effects. Thus, chlorophyll b and the chlorophyll a/b-binding proteins accumulate to near wild-type levels (chlorophyll a/b ratio = 3.5-4.5) and thylakoid morphology is more nearly wild type in appearance. Growth of the CD3 mutant in the presence of chloramphenicol stimulates the accumulation of chlorophyll b and its binding proteins (Duysen, M. E., T. P. Freeman, N. D. Williams, and L. L. Huckle. 1985. Plant Physiol. 78:531-536). We show that this partial rescue of the CD3 high light phenotype is accompanied by large changes in thylakoid structure. The CD3 mutant, which defines a new class of chlorophyll b-deficient phenotype, is discussed in the more general context of chlorophyll b deficiency.


Sign in / Sign up

Export Citation Format

Share Document