scholarly journals Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human adamantinomatous craniopharyngioma cells and promotes tumor cell migration

2017 ◽  
Vol 15 (6) ◽  
pp. 4123-4131 ◽  
Author(s):  
Jie Zhou ◽  
Chao Zhang ◽  
Jun Pan ◽  
Ligang Chen ◽  
Song-Tao Qi
Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3709
Author(s):  
Tomasz M. Grzywa ◽  
Klaudia Klicka ◽  
Paweł K. Włodarski

Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial–mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.


2020 ◽  
Author(s):  
Jinxue Zhang ◽  
Yuan Zhang ◽  
Yongming Liu ◽  
Xin Yi ◽  
Shiyang Cheng ◽  
...  

Abstract Background: Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a collagen receptor belonging to the immunoglobulin superfamily. Although prior studies have evaluated the biological role of LAIR in solid tumors, the precise mechanisms underlying LAIR-1 functions as a regulator of tumor biological functions remains unclear. Methods: LAIR-1 expression was evaluated using an osteosarcoma (OS) tissue microarray by immunohistochemical analysis. Wound healing and Transwell assays were performed to evaluate tumor cell migration. Quantitative PCR and western blotting were conducted to detect the expression of epithelial-mesenchymal transition (EMT)-related molecules. RNA-sequencing (RNA-seq) was conducted to evaluate the mRNA expression profiles after overexpressing LAIR-1 in OS cells. Glucose uptake and glucose transporter (Glut) 1 expression in OS cells in vitro were evaluated by flow cytometry and western blotting. Results: LAIR-1 expression significantly differed between the T1 and T2 stages of OS tumors, and LAIR-1 overexpression inhibited OS cell migration. LAIR-1 expression was inversely correlated with the expression of EMT-associated transcription factors via the Forkhead box O1/Twist1 signal transduction pathway. Furthermore, RNA-seq and quantitative PCR demonstrated that EMT energy metabolism-related molecules were significantly reduced after LAIR-1 overexpression. Conclusions: Notably, overexpression of LAIR-1 in OS cells decreased Glut1 expression. These findings provide insight into the molecular mechanism underlying OS progression.


2010 ◽  
Vol 21 (24) ◽  
pp. 4387-4399 ◽  
Author(s):  
Ester Martín-Villar ◽  
Beatriz Fernández-Muñoz ◽  
Maddy Parsons ◽  
Maria M. Yurrita ◽  
Diego Megías ◽  
...  

Podoplanin is a transmembrane glycoprotein up-regulated in different human tumors, especially those derived from squamous stratified epithelia (SCCs). Its expression in tumor cells is linked to increased cell migration and invasiveness; however, the mechanisms underlying this process remain poorly understood. Here we report that CD44, the major hyaluronan (HA) receptor, is a novel partner for podoplanin. Expression of the CD44 standard isoform (CD44s) is coordinately up-regulated together with that of podoplanin during progression to highly aggressive SCCs in a mouse skin model of carcinogenesis, and during epithelial-mesenchymal transition (EMT). In carcinoma cells, CD44 and podoplanin colocalize at cell surface protrusions. Moreover, CD44 recruitment promoted by HA-coated beads or cross-linking with a specific CD44 antibody induced corecruitment of podoplanin. Podoplanin–CD44s interaction was demonstrated both by coimmunoprecipitation experiments and, in vivo, by fluorescence resonance energy transfer/fluorescence lifetime imaging microscopy (FRET/FLIM), the later confirming its association on the plasma membrane of cells with a migratory phenotype. Importantly, we also show that podoplanin promotes directional persistence of motility in epithelial cells, a feature that requires CD44, and that both molecules cooperate to promote directional migration in SCC cells. Our results support a role for CD44-podoplanin interaction in driving tumor cell migration during malignancy.


2020 ◽  
Author(s):  
Jinxue Zhang ◽  
Yuan Zhang ◽  
Shiyang Cheng ◽  
Yang Mu ◽  
Yongming Liu ◽  
...  

Abstract Background: Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a collagen receptor belonging to the immunoglobulin superfamily. Although previous studies have evaluated the biological role of LAIR in solid tumors, the precise mechanisms underlying the functions of LAIR-1 as a regulator of tumor biological functions remain unclear.Methods: LAIR-1 expression was evaluated by immunohistochemical analysis using an osteosarcoma (OS) tissue microarray. Wound healing and transwell migration assays were performed to evaluate tumor cell migration. Quantitative real-time polymerase chain reaction (qPCR) and western blotting were conducted to detect the expression of epithelial–mesenchymal transition (EMT)-related molecules. RNA-sequencing (RNA-seq) was conducted to evaluate the mRNA expression profiles after overexpressing LAIR-1 in OS cells. Glucose transporter (Glut)1 expression in OS cells was evaluated by western blotting.Results: LAIR-1 expression was significantly different between the T1 and T2 stages of OS tumors, and it inhibited OS cell migration. LAIR-1 expression was inversely correlated with the expression of Twist1, an EMT-associated transcription factor, via the Forkhead box O1 signal transduction pathway. Furthermore, RNA-seq and qPCR demonstrated that the expression of EMT energy metabolism-related molecules was significantly reduced after LAIR-1 overexpression.Conclusions: LAIR-1 overexpression decreased the expression of Glut1 and inhibited the expression of EMT-related molecules in OS cells. These findings provide new insights into the molecular mechanism underlying OS progression.


2019 ◽  
Vol 14 (2) ◽  
pp. 158-169 ◽  
Author(s):  
Mohammad Davoodzadeh Gholami ◽  
Reza Falak ◽  
Sahel Heidari ◽  
Majid Khoshmirsafa ◽  
Mohammad H. Kazemi ◽  
...  

Background: Epithelial-to-Mesenchymal Transition (EMT) is necessary for metastasis. Zinc- finger domain-containing transcription factors, especially Snail1, bind to E-box motifs and play a crucial role in the induction and regulation of EMT. Objective: We hypothesized if C-terminal region of Snail1 (CSnail1) may competitively bind to E-box and block cancer metastasis. Methods: The CSnail1 gene coding sequence was inserted into the pIRES2-EGFP vector. Following transfection of A549 cells with the designed construct, EMT was induced with TGF-β1 and the expression of essential EMT markers was evaluated by real-time PCR and immunoblotting. We also monitored cell migration. Results: CSnail1 inhibited TGF-β1-induced N-cadherin and vimentin mRNA expression and increased β-catenin expression in transfected TGF-β1-treated A549 cells. A similar finding was obtained in western blotting. CSnail1 also blocked the migration of transfected cells in the scratch test. Conclusions: Transfection of A549 cells with CSnail1 alters the expression of essential EMT markers and consequently suppresses tumor cell migration. These findings confirm the capability of CSnail1 in EMT blocking and in parallel to current patents could be applied as a novel strategy in the prevention of metastasis.


2016 ◽  
Vol 7 (5) ◽  
pp. 546-554 ◽  
Author(s):  
Christine Mayer ◽  
Silvia Darb-Esfahani ◽  
Anne-Sophie Meyer ◽  
Katrin Hübner ◽  
Joachim Rom ◽  
...  

2019 ◽  
Author(s):  
Federico Bocci ◽  
Mohit Kumar Jolly ◽  
José Nelson Onuchic

AbstractThe gain of cellular motility via the epithelial-mesenchymal transition (EMT) is considered crucial in the metastatic cascade. Cells undergoing EMT to varying extents are launched into the bloodstream as single circulating tumor cells (CTCs) or multi-cellular clusters. The frequency and size distributions of these multi-cellular clusters has been recently measured, but the underlying mechanisms enabling these different modes of migration remain poorly understood. We present a biophysical model that couples the epithelial-mesenchymal phenotypic transition and cell migration to explain these different modes of cancer cell migration. With this reduced physical model, we identify a transition from individual migration to clustered cell migration that is regulated by the rate of EMT and the degree of cooperativity between cells during migration. This single cell to clustered migration transition can robustly recapitulate cluster size distributions observed experimentally across several cancer types, thus suggesting the existence of common features in the mechanisms of cell migration during metastasis. Furthermore, we identify three main mechanisms that can facilitate the formation and dissemination of large clusters: first, mechanisms that prevent a complete EMT and instead increase the population of hybrid Epithelial/Mesenchymal (E/M) cells; second, multiple intermediate E/M states that give rise to heterogeneous clusters formed by cells with different epithelial-mesenchymal traits; and third, non-cell-autonomous induction of EMT via cell-to-cell signaling that gives rise to spatial correlations among cells in a tissue. Overall, this biophysical model represents a first step toward bridging the gap between the molecular and biophysical understanding of EMT and various modes of cancer cell migration, and highlights that a complete EMT might not be required for metastasis.Popular summaryThe Epithelial-Mesenchymal Transition (EMT) has been identified as the first step that enables cancer metastases; through this process, cancer cells gain the motility necessary to migrate and invade. Cancer cells that undergo EMT can enter the circulatory system both as single cells or as multi-cellular clusters. While single cells are generally more frequent in human cancers, clusters are more prevalent in aggressive cancers that metastasize more. Although the molecular mechanisms of EMT are relatively conserved across cancers, how different cancers exhibit such tremendous variability in terms of cell migration remains unclear. We develop a biophysical model to investigate how EMT regulation at a single cell level can give rise to single cell and clustered cell migration. This model quantitatively reproduces size distributions of circulating tumor cell clusters reported in human circulation and mouse models, therefore identifying a unifying set of principles governing cell migration across different cancer types. Moreover, a model where cells only undergo a partial EMT to a hybrid epithelial/mesenchymal state can recapitulate different features observed in collective cancer cell migration, including the frequency of large clusters and flat distributions that cannot be captured by a model of complete EMT. Besides partial EMT, we propose additional mechanisms that can facilitate the formation of large tumor cell clusters, including multiple hybrid epithelial/mesenchymal cell states and signaling between cells that enables noncell autonomous EMT induction. Therefore, our general picture suggests universal traits in the migration of cancer cells and challenges the necessity of a complete EMT for cancer metastasis.


2020 ◽  
Vol 21 (3) ◽  
pp. 765 ◽  
Author(s):  
Antonio Villalobo ◽  
Martin W. Berchtold

Calmodulin (CaM) is the principal Ca2+ sensor protein in all eukaryotic cells, that upon binding to target proteins transduces signals encoded by global or subcellular-specific changes of Ca2+ concentration within the cell. The Ca2+/CaM complex as well as Ca2+-free CaM modulate the activity of a vast number of enzymes, channels, signaling, adaptor and structural proteins, and hence the functionality of implicated signaling pathways, which control multiple cellular functions. A basic and important cellular function controlled by CaM in various ways is cell motility. Here we discuss the role of CaM-dependent systems involved in cell migration, tumor cell invasiveness, and metastasis development. Emphasis is given to phosphorylation/dephosphorylation events catalyzed by myosin light-chain kinase, CaM-dependent kinase-II, as well as other CaM-dependent kinases, and the CaM-dependent phosphatase calcineurin. In addition, the role of the CaM-regulated small GTPases Rac1 and Cdc42 (cell division cycle protein 42) as well as CaM-binding adaptor/scaffold proteins such as Grb7 (growth factor receptor bound protein 7), IQGAP (IQ motif containing GTPase activating protein) and AKAP12 (A kinase anchoring protein 12) will be reviewed. CaM-regulated mechanisms in cancer cells responsible for their greater migratory capacity compared to non-malignant cells, invasion of adjacent normal tissues and their systemic dissemination will be discussed, including closely linked processes such as the epithelial–mesenchymal transition and the activation of metalloproteases. This review covers as well the role of CaM in establishing metastatic foci in distant organs. Finally, the use of CaM antagonists and other blocking techniques to downregulate CaM-dependent systems aimed at preventing cancer cell invasiveness and metastasis development will be outlined.


Sign in / Sign up

Export Citation Format

Share Document