scholarly journals MicroRNA‑142‑3p suppresses cell proliferation, invasion and epithelial‑to‑mesenchymal transition via RAC1‑ERK1/2 signaling in colorectal cancer

2021 ◽  
Vol 24 (2) ◽  
Author(s):  
Na Xie ◽  
Qiuping Meng ◽  
Yixin Zhang ◽  
Zhifei Luo ◽  
Fenggui  Xue ◽  
...  
2021 ◽  
Vol 38 (2) ◽  
Author(s):  
Wenqian Zheng ◽  
Jinhui Hu ◽  
Yiming Lv ◽  
Bingjun Bai ◽  
Lina Shan ◽  
...  

AbstractThe use of the anthelmintic drug pyrvinium pamoate (PP) in cancer therapy has been extensively investigated in the last decade. PP has been shown to have an inhibitory effect in colorectal cancer (CRC), but the underlying mechanism remains elusive. We aimed to investigate the antitumor activity and mechanisms of PP in CRC. In the present study, we used CCK-8 assays, colony formation assays, and western blotting to reveal that PP effectively suppressed CRC cell proliferation and the AKT-dependent signaling pathway in a concentration-dependent and time-dependent manner. Flow cytometric analysis and fluorescence microscopy demonstrated that PP increased intracellular reactive oxygen species (ROS) accumulation. We found that the inhibitory effect of PP on cell proliferation and AKT protein expression induced by PP could be partially reversed by N-acetyl-l-cysteine (NAC), an ROS scavenger. In addition, the results also demonstrated that PP inhibited cell migration by modulating epithelial-to-mesenchymal transition (EMT)-related proteins, including E-cadherin and vimentin. In conclusion, our data suggested that PP effectively inhibited cell proliferation through the ROS-mediated AKT-dependent signaling pathway in CRC, further providing evidence for the use of PP as an antitumor agent.


2017 ◽  
Vol 114 (16) ◽  
pp. 4159-4164 ◽  
Author(s):  
Raphael Rapetti-Mauss ◽  
Viviana Bustos ◽  
Warren Thomas ◽  
Jean McBryan ◽  
Harry Harvey ◽  
...  

The K+ channel KCNQ1 has been proposed as a tumor suppressor in colorectal cancer (CRC). We investigated the molecular mechanisms regulating KCNQ1:β-catenin bidirectional interactions and their effects on CRC differentiation, proliferation, and invasion. Molecular and pharmacologic approaches were used to determine the influence of KCNQ1 expression on the Wnt/β-catenin signaling and epithelial-to-mesenchymal transition (EMT) in human CRC cell lines of varying stages of differentiation. The expression of KCNQ1 was lost with increasing mesenchymal phenotype in poorly differentiated CRC cell lines as a consequence of repression of the KCNQ1 promoter by β-catenin:T-cell factor (TCF)-4. In well-differentiated epithelial CRC cell lines, KCNQ1 was localized to the plasma membrane in a complex with β-catenin and E-cadherin. The colocalization of KCNQ1 with adherens junction proteins was lost with increasing EMT phenotype. ShRNA knock-down of KCNQ1 caused a relocalization of β-catenin from the plasma membrane and a loss of epithelial phenotype in CRC spheroids. Overexpression of KCNQ1 trapped β-catenin at the plasma membrane, induced a patent lumen in CRC spheroids, and slowed CRC cell invasion. The KCNQ1 ion channel inhibitor chromanol 293B caused membrane depolarization, redistribution of β-catenin into the cytosol, and a reduced transepithelial electrical resistance, and stimulated CRC cell proliferation. Analysis of human primary CRC tumor patient databases showed a positive correlation between KCNQ1:KCNE3 channel complex expression and disease-free survival. We conclude that the KCNQ1 ion channel is a target gene and regulator of the Wnt/β-catenin pathway, and its repression leads to CRC cell proliferation, EMT, and tumorigenesis.


2018 ◽  
Vol 46 (5) ◽  
pp. 1895-1906 ◽  
Author(s):  
Hanqing Hu ◽  
Meng Wang ◽  
Hongwei Wang ◽  
Zheng Liu ◽  
Xu Guan ◽  
...  

Background/Aims: Colorectal cancer (CRC) is a malignancy that has high morbidity and mortality and is initiated from accumulative genetic events. Although much effort has been made to elucidate the genetic mechanism underlying this disease, it still remains unknown. Here, we discovered a novel role for multiple epidermal growth factor-like domains protein 6 (MEGF6) in CRC, namely, that it induces the epithelial-to-mesenchymal transition (EMT) to promote CRC metastasis via the transforming growth factor beta (TGFβ)/SMAD signaling pathway. Methods: RNA sequencing data from the Gene Expression Omnibus database were analyzed using R software. Based on The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) cohort, the clinical significance of MEGF6 was investigated. HCT8R, HCT116, and LoVo CRC cells were transfected with small interfering RNA against MEGF6, and their proliferation and sensitivity to fluorouracil were evaluated with the MTT cell proliferation and colony formation assays. Proteins associated with cell growth were detected by western blot analysis. The apoptosis of cells was evaluated by Annexin V/propidium iodide staining, and transwell assays were performed to assess the involvement of MEGF6 in cell migration. Markers of EMT and TGFβ/SMAD signaling were evaluated by quantitative PCR and western blotting, and the correlation between MEGF6 and these markers was assessed in the TCGA colon and renal adenocarcinoma cohort. Results: The results showed that MEGF6 was upregulated in HCT8R cells. In addition, MEGF6 was significantly overexpressed in tumor tissue and predicted a poor survival in the TCGA-COAD cohort. Moreover, MEGF6 accelerated CRC cell growth and inhibited apoptosis, and promoted CRC metastasis by inducing the EMT. Finally, we found that TGFβ/SMAD signaling triggered the expression of Slug, which regulates the MEGF6-mediated EMT. Conclusions: MEGF6 may serve as an oncogene to promote cell proliferation and inhibit apoptosis. MEGF6 can also accelerate cell migration via TGFβ/SMAD signaling-mediated EMT.


2021 ◽  
Vol 22 (9) ◽  
pp. 5019
Author(s):  
Helena Oliveres ◽  
David Pesántez ◽  
Joan Maurel

Insulin-like growth factor 1 receptor (IGF1R) is a receptor tyrosine kinase that regulates cell growth and proliferation. Upregulation of the IGF1R pathway constitutes a common paradigm shared with other receptor tyrosine kinases such as EGFR, HER2, and MET in different cancer types, including colon cancer. The main IGF1R signaling pathways are PI3K-AKT and MAPK-MEK. However, different processes, such as post-translational modification (SUMOylation), epithelial-to-mesenchymal transition (EMT), and microenvironment complexity, can also contribute to intrinsic and acquired resistance. Here, we discuss new strategies for adequate drug development in metastatic colorectal cancer patients.


2021 ◽  
Author(s):  
Wentao Li ◽  
Ismatullah Soufiany ◽  
Xiao Lyu ◽  
Lin Zhao ◽  
Chenfei Lu ◽  
...  

Abstract Background: Mounting evidences have shown the importance of lncRNAs in tumorigenesis and cancer progression. LBX2-AS1 is an oncogenic lncRNA that has been found abnormally expressed in gastric cancer and lung cancer samples. Nevertheless, the biological function of LBX2-AS1 in glioblastoma (GBM) and potential molecular mechanism are largely unclear. Methods: Relative levels of LBX2-AS1 in GBM samples and cell lines were detected by qRT-PCR and FISH. In vivo and in vitro regulatory effects of LBX2-AS1 on cell proliferation, epithelial-to-mesenchymal transition (EMT) and angiogenesis in GBM were examined through xenograft models and functional experiments, respectively. The interaction between Sp1 and LBX2-AS1 was assessed by ChIP. Through bioinformatic analyses, dual-luciferase reporter assay, RIP and Western blot, the regulation of LBX2-AS1 and miR-491-5p on the target gene leukemia Inhibitory factor (LIF) was identified. Results: LBX2-AS1 was upregulated in GBM samples and cell lines, and its transcription was promoted by binding to the transcription factor Sp1. As a lncRNA mainly distributed in the cytoplasm, LBX2-AS1 upregulated LIF, and activated the LIF/STAT3 signaling by exerting the miRNA sponge effect on miR-491-5p, thus promoting cell proliferation, EMT and angiogenesis in GBM. Besides, LBX2-AS1 was unfavorable to the progression of glioma and the survival. Conclusion: Upregulated by Sp1, LBX2-AS1 promotes the progression of GBM by targeting the miR-491-5p/LIF axis. It is suggested that LBX2-AS1 may be a novel diagnostic biomarker and therapeutic target of GBM.


2020 ◽  
Author(s):  
Qian Wang ◽  
Wanjun Liu ◽  
Si Chen ◽  
Qianxin Luo ◽  
Yichen Li ◽  
...  

AbstractBackgroundORMDL1 gene encodes a transmembrane protein for endoplasmic reticulum and is known as crucial negative regulator for sphingolipid biogenesis. However, it has been rarely studied in tumor-related context. Therefore, its prognostic value and functional significance in colorectal cancer (CRC) remain to be explored.MethodsTCGA CRC cohort analysis, qRT-PCR, and immunohistochemistry (IHC) were used to examine the ORMDL1 expression level. The association between ORMDL1 expression and various clinical characteristics were analyzed by Chi-square tests. CRC patients’ overall survival (OS) was analyzed by Kaplan-Meier analysis. In vitro and in vivo cell-based assays were performed to explore the role of ORMDL1 in cell proliferation, invasion and migration. Transcriptional changes of cells either with ORMDL1 knockdowned or overexpressed were compared and analyzed.ResultsORMDL1 was upregulated in CRC tissues either in TCGA cohort or in our cohort. Interestingly, its expression was significantly lower in patients with metastasis compared to patients without metastasis, and high expression group had longer OS than low expression group. Knockdown of ORMDL1 expression can promote proliferation, colony formation and invasion, while attenuate migration in CRC cell lines. In opposite, forced overexpression of ORMDL1 reduced cell proliferation, colony formation and invasion, while enhanced cell migration. Epithelial-to-mesenchymal transition (EMT) related genes were enriched among differentially expressed genes when ORMDL1 was knockdowned in cells, which was consistent with morphologic change by microscopy observation. Finally, stable knockdown of ORMDL1 can promote cancer cell proliferation in vivo to some extent.ConclusionORMDL1 is upregulated and may serve as biomarker to predict favourable outcome in colorectal cancer.


2020 ◽  
Author(s):  
Qing Song ◽  
Liu Yang ◽  
Zhifen Han ◽  
Xinnan Wu ◽  
Ruixiao Li ◽  
...  

Abstract Background: Tanshinone IIA (Tan IIA) is a major active ingredient extracted from Salvia miltiorrhiza, which has been proved to inhibit metastasis of various cancers including colorectal cancer (CRC). However, the detailed mechanisms of Tan IIA against CRC metastasis are not well explored. Epithelial-to-mesenchymal transition (EMT) exerts an important regulatory role in CRC metastasis, and our previous mechanism studies demonstrated that β-arrestin1 could regulate CRC EMT partly through β-catenin signaling pathway. Therefore, in this work we investigated whether Tan IIA could regulate CRC EMT through β-arrestin1-mediated β-catenin signaling pathway in vivo and in vitro.Methods: The nude mice tail vein metastasis model was established to observe the effect of Tan IIA on CRC lung metastasis in vivo. The lung metastasis was evaluated by living animal imaging and hemaoxylin-eosin staining. The migratory ability of CRC cells in vitro were measured by transwell and wound healing assays. The protein expression and cellular localization of β-arrestin1 and β-catenin were characterized by immunofluorescence staining and western blot. The β-catenin signaling pathway related proteins and EMT associated proteins in CRC cells were detected by western blot and immunohistochemistry. Results: Our results showed that Tan IIA inhibited the lung metastases of CRC cells in vivo and extended the survival time of nude mice. In vitro, Tan IIA increased the expression of E-cadherin, decreased the secretion of Snail, N-cadherin and Vimentin, thus suppressed EMT and the migratory ability of CRC cells. Further study found the mechanism involving in Tan IIA regulating EMT and metastasis, referring to the suppression of β-arrestin1 expression, reduction of β-catenin nuclear localization, thereby the decreased activity of β-catenin signaling. Conclusion: Our data revealed a new mechanism of Tan IIA on the suppression of EMT and metastasis in CRC via β-arrestin1-mediated β-catenin signaling pathway, and provided support for Tan IIA as anti-metastatic agents in CRC.


Sign in / Sign up

Export Citation Format

Share Document